Search
Close this search box.

<!– /* Font Definitions */ @font-face {font-family:”Cambria Math”; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:1; mso-generic-font-family:roman; mso-font-format:other; mso-font-pitch:variable; mso-font-signature:0 0 0 0 0 0;} @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-1610611985 1073750139 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:””; margin-top:0in; margin-right:0in; margin-bottom:10.0pt; margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:”Calibri”,”sans-serif”; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:”Times New Roman”; mso-bidi-theme-font:minor-bidi;} p {mso-style-noshow:yes; mso-style-priority:99; mso-margin-top-alt:auto; margin-right:0in; mso-margin-bottom-alt:auto; margin-left:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:”Times New Roman”,”serif”; mso-fareast-font-family:”Times New Roman”;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:”Times New Roman”; mso-bidi-theme-font:minor-bidi;} .MsoPapDefault {mso-style-type:export-only; margin-bottom:10.0pt; line-height:115%;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.0in 1.0in 1.0in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} –>

by; A. N. Njah, Department of Physics, University of Agriculture, Abeokuta, Nigeria.
and R. Akin-Ojo, Department of Physics, University of Ibadan, Ibadan, Nigeria

 

Abstract
The Non-linear Schrodinger Equation (NLSE), (in units of where is a positive real constant, and is a real constant, E is the energy, is known to be integral for infinite X space. A Fourier analysis in a bounded interval , i.e. shows that the NLSE is a nonlinear Hamiltonian system of N degrees of freedom. The effect of truncating the degrees of freedom to a finite number N and the fact that L is finite are investigated for the case and . The results show that chaos sets in at certain value of the energy as the energy – increases for fixed N. Hence the NLSE is not integrable for finite N, and L. However, the integrability increases with increase in N implying that as N tends to infinity the NLSE becomes completely integrable as expected.

 

Full text

Times Higher Education (THE)
World University Rankings (WUR) for 2024

rANKING OF UniversitIES of Agriculture

1ST IN aFRICA | 7TH gLOBALLY

30th Convocation Ceremonies

Award of First Degree to deserving graduands

Days
Hours
Minutes
Seconds