EXAMPLES

Electrical consumption

Determine the cost of using the following appliances for the period indicated. Use PHCN domestic rate
i. 2000 W water heater for 3 hours
ii. Sixty 60 W bulbs in a poultry from 7pm till 7am for a month.
iii. An hammer mill with 2000 W electric motor in a feedmill. It is normally operated non-stop only during official government working hours for 22 days in a month.

Solution

- $2000 x 3=6000 \mathrm{WHr}=6 \mathrm{KW}$ Hr @ 44.00 per KW-Hr $=\mathrm{M} 24.00$
- $60 \times 12 \mathrm{Hrs} \times 30$ days $=21600 \mathrm{WHr}$; $21.6 \times 4 \mathrm{KW}-\mathrm{Hr}=\mathrm{N} 86.40$
- $2000 \mathrm{~W} \times 8$ Hrs x 22 days $=352000 \mathrm{WHr} ; 352 \times 4 \mathrm{KW}-\mathrm{Hr}=\mathrm{N}$ 14,808.00

Work that can be done with 1 KWhr of electricity

Types of work possible with 1 kW -Hr electricity
(i.) Pumping 20 Litres or 500 gallons of water
(ii) Milking 20 cows
(iii) Cooling 40 Litres of water or milk for one day
(iv) Shelling corn of 778.69 kg at a moisture content of 13% wet basis
(v) Heating 16 Litres of water
(vi) Running a tool grinder for 3 hours

Examples

1. Wire guage No 10 on the American Wire Guage has a current carrying capacity of 30 A and a resistance of 0.9998 Ohm per 330 m . Calculate the voltage drop and the power loss if the wire is used to transmit power from a poultry house to the feed store which is about 0.33 km away.

The current carrying capacity is over 330 m which is also $=0.33 \mathrm{Km}$
Voltage drop $=\mathrm{IR}=30 \mathrm{~A} \times 0.998 \Omega=29.94 \mathrm{~V}$
Power loss $=I^{2} \mathrm{R}=(30)^{2} \times 0.998=892 \mathrm{~W}$
2. During the operations in a feedmill, the meter disk makes 8.5 rev in 30 seconds. The meter $\mathrm{K}=0.6 \mathrm{Watt} / \mathrm{rev}$. What is the energy consumption? Calculate the monthly cost of operating the feedmill if the production capacity is an average of 3 bags/minute for a requirement of 1360 bags per day. The PHCN Industrial tariff rate is $\ddagger 8.00$ per KWhr.

Speed of rotation $=8.5 \mathrm{rev} / 30 \mathrm{sec}$, meter constant, $\mathrm{K}=0.6 \mathrm{~W} / \mathrm{rev}$
Energy $\quad=\quad$ Power x time (hr)
Speed of rotation (rev per Hr) $=8.5 \times 3600 / 30=1020 \mathrm{rev} / \mathrm{hr}$
Energy consumption $=\mathrm{K}(\mathrm{W} / \mathrm{rev}) \times$ Speed (Rev/hr) $=0.6 \times 1020=$ 612 W/hr

Rate $=3 \mathrm{bags} / \mathrm{min}$
Daily production = 1350 bags/day
Daily operation time $=1350 / 3$

$$
=450 \mathrm{~min} / \text { day }=450 / 60=7.5 \mathrm{hr} / \text { day }
$$

Daily power consumption $\quad=7.5 \mathrm{hr} \times 0.612 \mathrm{Kw}=4.59 \mathrm{KWhr}$
Monthly consumption $=4.59 \times 30=137.7 \mathrm{KWhr}$
Tariff $=\mathrm{N} 8.00$ per KWhr
Total cost $=137.7 \times 8.00=\$ 1,101.60$ per month
3. In a farm settlement, there are 5 pepper grinders using 2 kW electric motor; 20 households (each with 12, 60W light bulbs; 5, 13A sockets; 2, 15A sockets; 2, 5A, sockets; 3, electric ceiling fans 20W); two saw mills
 palm oil processing mill (50 kW), 2 cassava processing centres (15 Kw each), Village market/recreation centre and hall (100 kW).
i. Calculate the amount the PHCN will be realising from the settlement on a monthly basis assuming an average 8 operating hours for all the users. (PHCN TARRIF = 4.00 per kW-Hr)
ii. As the only Agricultural Engineer in your states Rural Electrification Board, justify the reason why you are recommending that the 300 kVA transformer in use should be changed.
iii. Recommend and appropriate transformer to the Board.

