

Fig. 1 Psychometric chart

On the Psychometric chart (Figure 1) follow down the wet-bulb line for a temperature of 20°C until it meets the dry-bulb temperature line for 25°C. Examining the location of this point of intersection with reference to the lines of constant relative humidity, it lies between 60% and 70% RH and about 4/10 of the way between them but nearer to the 60% line.

Therefore the RH is estimated to be 64%.

Similar examination of the enthalpy lines gives an estimated enthalpy of 57 kJ kg<sup>-1</sup>, and from the volume lines a specific volume of 0.862 m<sup>3</sup> kg<sup>-1</sup>.



LABORATORY 1.

**TITLE:** Physical Properties of Agricultural Products 1 - Size and shape **OBJECTIVES**: At the end of this laboratory you will be able to do the following:

- 1. Measure the principal dimensions of some fruits and vegetables
- 2. Determine the roundness and sphericity of the products
- 3. Determine surface area of the products
- 4. Determine the overall shape of the products

**NOTES:** Physical characteristics of agricultural products are very important in handling the products and in the design of machinery for drying, handling, processing and storage.

## Procedure

A. Roundness

You are supplied with

- a. Garden egg
- b. Tomato
- c. Orange
- d. Any other product
- 1. Draw the projection of each of the product in the natural rest position.
- 2. Draw the smallest circumscribing circle on the projection drawn in I
- 3. Calculate Roundness using the relationship  $A_p/A_c$
- 4. Repeat procedure A 1 draw an inscribed circle and calculate roundness using the relationship  $E_t$  / NR as given in class
- 5. Repeat procedure A1, and calculate roundness using the relationship r/R as given in class.
- 6. Compare the three results for all the products.
- B. Sphericity
  - 1. Measure the three major diameter, a b and c (as given in class) of all the products given  $(abc)^{1/3}/a$
  - 2. Determine sphericity using the relationship
  - 3. Draw the projections of the products in their natural rest position.
  - 4. Draw the largest inscribed circle and the smallest circumscribed circle.
  - 5. Determine sphericity with the relationship  $d_1/d_2$  (as in class)
  - 6. Compare your results in 2 and 5
  - 7. Why do you think roundness and sphericity are important in handling and processing?

- 8. Which is easier to handle a large sized product or a small product? Why?
- 9. Describe the shape of each product.

## LABORATORY 2:

**TITLE:** Physical Properties of Agric Products II – Volume, Density and Surface area

**OBJECTIVES**: At the end of this laboratory, you will be able to do the following:

- 1. Determine the volume and density of product that is heavier than water
- 2. Determine the volume and density of product that is lighter than water
- 3. Determine the surface areas of some products.

**REQUIREMENTS**: Fruits, vegetables, graph paper, scale, container sinker and water.

**NOTES**: Volume, density and surface area are important parameters in the design of soils and storage bins, separation of products from undesirable materials, mechanical compression of material, grading and sorting.

## PROCEDURE

A. Volume and Density of heavy product.

You are supplied with 4 agricultural products that will readily sink in water, for all four products

- 1. Determine the weight of product in  $air W_a$
- 2. Determine wt of container + water  $W_w$
- 3. Determine weight of container + water product  $W_r$
- 4. Find volume of product. Also find density and specific gravity of product.
- B. Volume and density of light product

You are supplied with 3 products that are lighter than water

- 1. Determine weight of product in  $air W_{pa}$
- 2. Determine weight of product in water  $\hat{W}_{pw}$
- 3. Determine weight of sinker + product inair  $W_{aa}$
- 4. Determine weight of sinker + product in water  $-W_{aw}$
- 5. Find the wt. of water supplied, volume of solid and density of solid
- C. Surface area

You are supplied with 3 kinds of leaves

- 1. Project the surface area on paper
- 2. Find the area of the leaves using graph paper
- D. Questions
- 1. In what area do you think surface area of objects is particularly useful?
- 2. How do you suppose you can find the volume of products that will dissolve in water?