Lecture 7: Reproductive Behaviour and Life Cycle of Selected Species 1) Tilapia: Life History and Biology

The Nile tilapia (*Oreochromis niloticus*) was one of the first fish species cultured. Illustrations from Egyptian tombs suggest that Nile tilapia were cultured more than 3,000 years ago. Tilapia have been called Saint Peters fish in reference to biblical passages about the fish fed to the multitudes. The Nile tilapia is still the most widely cultured species of tilapia in Africa.

Positive aquacultural characteristics of tilapia are their tolerance to poor water quality and the fact that they eat a wide range of natural food organisms. Biological constraints to the development of commercial tilapia farming are their inability to withstand sustained water temperatures below 50 to 520 F and early sexual maturity that results in spawning before fish reach market size. Following is a discussion of the characteristics and culture of non-hybrid tilapia.

Taxonomy

Tilapia is the generic name of a group of cichlids endemic to Africa. The group consists of three aquaculturally important genera Oreochromis, Sarotherodon and Tilapia. Several characteristics distinguish these three genera, but possibly the most critical relates to reproductive behavior. All tilapia species are nest builders; fertilized eggs are guarded in the nest by a brood parent. Species of both Sarotherodon and Oreochromis are mouth brooders; eggs are fertilized in the nest but parents immediately pick up the eggs in their mouths and hold them through incubation and for several days after hatching. In *Oreochromis* species only females practice mouth brooding, while in *Sarotherodon* species either the male or both male and female are mouth brooders.

During the last half century fish farmers throughout the tropical and semi-tropical world have begun farming tilapia. Today, all commercially important tilapia outside of Africa belong to the genus Oreochromis, and more than 90 percent of all commercially farmed tilapia outside of Africa are Nile tilapia. Less commonly farmed species are Blue tilapia (O. aureus), Mozambique tilapia (O. Mossambicus) and the Zanzibar tilapia (O. urolepis hornorum). The scientific names of tilapia species have been revised a lot in the last 30 years, creating some confusion. The scientific name of the Nile tilapia has been given as Tilapia nilotica, Sarotherodon niloticus, and currently as Oreochromis niloticus.

Physical characteristics

Tilapia are shaped much like sunfish or crappie but can be easily identified by an interrupted lateral line characteristic of the Cichlid family of fishes. They are laterally compressed and deep-bodied with long dorsal fins. The forward portion of the dorsal fin is heavily spined. Spines are also found in the pelvis and anal fins. There are usually wide vertical bars down the sides of fry, fingerlings, and sometimes adults.

Banding Patterns and Coloration

The main cultured species of tilapia usually can be distinguished by different banding patterns on the caudal fin. Nile tilapia have strong vertical bands, Blue tilapia have interrupted bands, and Mozambique tilapia have weak or no bands on the caudal fin. Male Mozambique tilapia also have upturned snouts. Color patterns on the body and fins also may distinguish species. Mature male Nile tilapia have gray or pink pigmentation in the throat region, while Mozambique tilapia have a more yellow coloration. However, coloration is often an unreliable method of distinguishing tilapia species because environment, state of sexual maturity, and food source greatly influence color intensity. The red tilapia has become increasingly popular because its similar appearance to the marine red snapper gives it higher market value. The original red tilapias were genetic mutants. The first red tilapia, produced in Taiwan in the late 1960s, was a cross between a mutant reddish- orange female Mozambique tilapia and a normal male Nile tilapia. It was called the Taiwanese red tilapia. Another red strain of tilapia was developed in Florida in the 1970s by crossing a normal colored female Zanzibar tilapia with a red-gold Mozambique tilapia.

A third strain of red tilapia was developed in Israel from a mutant pink Nile tilapia crossed with wild Blue tilapia. All three original strains have been crossed with other red tilapia of unreported origin or with wild *Oreochromis* species. Consequently, most red tilapia in the Americas are mosaics of uncertain origin. The confused and rapidly changing genetic composition of red tilapia, as well as the lack of

head growth comparisons between the different lines, make it difficult for a producer to identify a

best red strain. Other strains of tilapia selected for color include true breeding gold and yellow Mozambique lines and a Rocky Mountain white tilapia (a true breeding line originating from an aberrant Blue tilapia, subsequently crossed with Nile tilapia). Most strains selected for color do not grow well enough for food fish culture.

Identifying the species of an individual fish is further complicated by natural crossbreeding that has occurred between species. Electrophoresis is often used to determine the species composition of a group of tilapia.

Reproduction

In all Oreochromis species the male excavates a nest in the pond bottom (generally in water shallower than 3 feet) and mates with several females. After a short mating ritual the female spawns in the nest (about two to four eggs per gram of brood female), the male fertilizes the eggs, and she then holds and incubates the eggs in her mouth (buccal cavity) until they hatch. Fry remain in the females mouth through yolk sac absorption and often seek refuge in her mouth for several days after they begin to feed.

Sexual maturity in tilapia is a function of age, size and environmental conditions. The Mozambique tilapia reaches sexual maturity at a smaller size and younger age than the Nile and Blue tilapias. Tilapia populations in large lakes mature at a later age and larger size than the same species raised in small farm ponds. For example, the Nile tilapia matures at about 10 to 12 months and 3/4 to 1 pound (350 to 500 grams) in several East African lakes. Under good growth conditions this same species will reach sexual maturity in farm ponds at an age of 5 to 6 months and 5 to 7 ounces (150 to 200 grams). When growth is slow, sexual maturity in Nile tilapia is delayed a month or two but stunted fish may spawn at a weight of less than 1 ounce (20 grams). Under good growing conditions in ponds, the Mozambique tilapia may reach sexual maturity in as little as 3 months of age, when they seldom weigh more than 2 to 4 ounces (60 to 100 grams). In poorly fertilized ponds sexually mature Mozambique tilapia may be as small as 1/2 ounce (15 grams).

Fish farming strategies that prevent overcrowding and stunting include: 1) cage farming where eggs fall through the mesh to the pond bottom before the female can collect them for brooding; 2) polyculture with a predator fish, such as fingerling largemouth bass, at 400 per acre; and 3) culture of only males (monosex). All-male culture is desirable in ponds not only to prevent overpopulation and stunting but also because males grow about twice as fast as females. Methods of obtaining predominately male fish include: 1) manually separating the sexes based on visual examination of the genital papilla of juvenile fish (hand-sexing); 2) hybridizing between two selected species that produce all-male offspring (for example, Nile or Mozambique females crossed with Blue or Zanzibar males); 3) feeding a male hormonetreated

feed to newly hatched fry for 3 to 4 weeks to produce reproductively functional males (sex reversal); or 4) YY male technology (currently under development and not yet a commercial option). The sex of a 1-ounce (25-gram) tilapia fingerling can be determined by examining the genital papilla located immediately behind the anus (Fig. 1). In males the genital papilla has only one opening (the urinary pore of the ureter) through which both milt and urine pass. In females the eggs exit through a separate oviduct and only urine passes through the urinary pore. Placing a drop of dye (methylene blue or food coloring) on the genital region helps to highlight the papilla and its openings.