
Variability 

The average score in a distribution is important in many research contexts. So too is another set of 
statistics that quantify how variable (or "how dispersed") the scores tend to be. Do the scores vary a lot, 
or do they tend to be very similar or near each other in value? Sometimes variability in scores is the 
central issue in a research question. Variability is a quantitative concept, so none of this applies to 
distributions of qualitative data.  

There are many intuitively appealing but little used measures of variability. The range, for example, is 
the difference between the largest and smallest score in the data set. The interquartile range or IQR is 
the difference between what we will later call the 25th and 75th percentile scores. By far the most widely 
used measures of variability are those to do with averaging how spread out the scores are from the mean. 
These are the Sums of Squares (SS), the standard deviation (s, or sd), and the variance (s2 or "var"). 

Sums of squares 

Consider for a minute transforming the original data in Table 4.1 to deviations. That is, each score is 
converted to the difference between that score and the mean. So all 1s become 1 minus 1.864 or -0.864. 
All 0s become 0 minus 1.864 or -1.864. All 2s become 2 minus 1.864 or 0.136. It might be obvious to you 
that if the scores tended to differ a lot from the mean, then these differences would tend to be large 
(ignoring the sign), whereas these differences would tend to be small (ignoring sign) if the scores tended 
vary little from the mean.  

The measure typically used to quantify variability in a distribution is based on the concept of average 
squared deviation from the mean.  

Let’s take each difference from the mean and square it. Then, let’s add up these squared deviations. When 
you do this you have the sum of the squared deviations (which is then reduced to "Sums of Squares", or 
SS). Its formula is 

 

The left-hand side of the equation is the definitional formula and the right hand side is the computational 
formula. SPSS output does not give the Sums of Squares for a variable when you choose Frequencies. 
However, many later statistical procedures do give this as part of the output. It’s value lies in 
summarising the total amount of variability in the variable being examined. For the phone call data SS = 
848.74 (calculated by the method below). The size of this number depends on the size of the numbers in 
the data and how much data there is (i.e., the sample size). There are no units for SS. 

Sometimes there is confusion about the terms variability and variance. Variability refers to the Sums of 
Squares for a variable, while variance refers to the Sums of Squares divided by N-1. Sums of Squares are 
widely used because they are additive. Once we divide by N-1, the additive property disappears. When 
we later talk about the "proportion of variance explained" we really mean the "proportion of variability 
explained". If a variable X explains 56% of the variability in variable Y it refers to the proportion of Y’s 
Sums of Squares that is attributable to variable X’s Sums of Squares. 

Variance 



Variance (of a sample) is defined as  

 

Once we divide the Sums of Squares by N-1 we get the sample variance which can be thought of as an 
averaged sums of squares. While important in statistical theory and in many statistical computations, it 
has the problem of being in squared units and is therefore difficult to manipulate and visualise.  

To get the SS for a variable from the Frequencies information, you need to rearrange the above 
equation to get 

 
 

Standard deviation 

To overcome the problem of dealing with squared units, statisticians take the square root of the variance 
to get the standard deviation.  

The standard deviation (for a sample) is defined symbolically as 

 

So if the scores in the data were 5, 7, 6, 1, and 8, their squared differences from the mean would be 0.16 
(from [5-5.4]2), 2.56 (from [7-5.4]2), 0.36 (from [6-5.4]2), 19.36 (from [1-5.4]2), and 6.76 (from [8-5.4]2). 
The mean of these squared deviations is 5.84 and its square root is 2.41 (if dividing by N), which is the 
standard deviation of these scores. The standard deviation is defined as the average amount by which 
scores in a distribution differ from the mean, ignoring the sign of the difference. Sometimes, the 
standard deviation is defined as the average distance between any score in a distribution and the mean of 
the distribution. 

The above formula is the definition for a sample standard deviation. To calculate the standard deviation 
for a population, N is used in the denominator instead of N-1. Suffice it to say that in most contexts, 
regardless of the purpose of your data analysis, computer programs will print the result from the sample 
sd. So we will use the second formula as our definitional formula for the standard deviation, even 
though conceptually dividing by N makes more sense (i.e., dividing by how many scores there are to get 
the average). When N is fairly large, the difference between the different formulas is small and trivial. 



Using the N-1 version of the formula, we still define the standard deviation as the average amount by 
which scores in a distribution differ from the mean, ignoring the sign of the difference, even though this 
isn’t a true average using this formula. 

The standard deviation in our phone call data is 2.196, from the SPSS printout in Output 4.2. So the mean 
number of phone call is 1.864 with a standard deviation of 2.196. The units are now the same as the 
original data. But, is this a large standard deviation? It is hard to say. In a normal distribution the mean 
and standard deviation are independent of each other. That is one could be large or small and the other 
large or small without any influence on each other. However, in reality they are often linked so that 
larger, means tend to have larger standard deviations. This leads into the area of transformations that are a 
way of re-establishing this independence. 

 

A useful measure of a distribution that is sometimes used is the ratio of the standard deviation to the mean  

The standard deviation has one undesirable feature. Like the mean, one or two extreme scores easily 
influence the standard deviation. So really atypical scores in a distribution ("outliers") can wildly change 
the distribution’s standard deviation. Here, adding a score of 200 increases the sd from 2.196 to 15.0115, 
a seven-fold increase! Because both of these descriptive statistics are influenced by extreme cases, it is 
important to note when extreme values exist in your data and might be influencing your statistics. How to 
define "extreme," and what to do if you have extreme data points is a controversial and complex topic out 
of the scope of this class. 

The Normal Distribution 

One of the more important distributions in statistics is the "normal" distribution. The normal distribution 
is depicted in Figure 4.7 below. Notice a few things about its features. 

First, it is a symmetrical distribution, meaning that the left half of the normal distribution is a mirror 
image of the right half.  

Second, most of the scores in a normal distribution tend to occur near the center, while more extreme 
scores on either side of the center become increasingly rare. As the distance from the center increases, the 
frequency of scores decreases.  

Third, the mean, median, and mode of the normal distribution are the same.  



 

Figure. 4.7 Histogram of Computer-Generated Normal Data 

Some people claim that the many variables are distributed normally, including such things are heights, 
weight, age. While there is some truth to the claim that many distributions are similar to the normal 
distribution, however, many of the things that appear normally distributed in fact are not. Still, many of 
the variables that we study, when measured, do approximate a normal distribution, so it is worth 
understanding its properties. As well, a prominent assumption or requirement for statistical tests is 
normality in the parent population from which the scores came. We can only check normality in the 
parent population by checking normality in the sample of scores we have. For most purposes, an 
approximately normal curve is fine. That is, one that does not deviate significantly from our symmetry. 

 

Transformations 

In many ways, the way in which we measure variables is very arbitrary. If we measured height, we could 
use a ruler and measure in feet and inches, or a ruler in centimetres and millimetres. Now these 
measurements can be converted from one to the other by a rule or formula. One hand = x inches = y 
centimetres. We do it all the time in the real world. The position of the hands of the clock (angle in 
degrees) measures the time (in hours and minutes,), level of mercury in a thermometer (centimetres) = 
temperature (in degrees), scores on a piece of paper (scores or points) = IQ (in some other arbitrary units). 
Therefore, the data you have are not sacred in terms of the actual numbers assigned. So, there are many 
options available to us in terms of converting scores from one metric to another or to another set of points 
on the same metric. The scaling of scores in the Higher School Certificate examination is a common 
example. 

In statistical practice there are a number of transformations that are in common use. The ones we will 
mention are dichotomisation, standardisation, normalising. 

Dichotomisation 

Variable can be classified in many ways. One way is continuous or discrete. A continuous variable (e.g., 
length) takes on many values, it is not restricted to just a few values such as gender (takes two values) or 
days of the week (takes on seven values). A variable that takes on only two values is a dichotomous 
variable. Male/female, yes/no, agree/disagree, true/false, present/absent, less than/more than, lowest 
half/highest half, experimental group/control group, are all examples of dichotomous variables.  



A continuous variable is said to contain more information about a construct because it measures it more 
accurately or more sensitively. Asking a person if they Agree or Disagree to a question does not give as 
much information about that person’s level of agreement as does a seven point scale 

1  2  3  4  5  6  7  

Strongly 
Disagree  

Moderately 
Disagree  

Somewhat 
Disagree  

Ambivalent  Somewhat 
Agree  

Moderately 
Agree  

Strongly 
Agree  

So, in general, you should use continuous variables wherever possible. However, there are times when 
only dichotomous measures are possible. There are also times when dichotomous variables are useful in 
their own right. This is mainly when you are only interested in broad comparisons. To compare two or 
three or four broad groupings can sometimes lead to a clearer understanding of relationships in data than 
considering continuous data.  

It is possible to convert continuous measurements to smaller numbers of categories by recoding the 
variable. We could recode height into below average or above average (call them 0 and 1, or 1 and 2). We 
could convert age into three categories of young, middle, and old. We could recode the above scale to 
Disagree (all responses of 1, 2, and 3) and Agree (all responses of 5, 6, and 7) and ignore a response of 4. 
Whenever you do this you are losing information about the construct being measured. Note it is not 
possible to convert from a dichotomous variable to a higher number of categories. If you only have 
Agree/Disagree data, you cannot recode into a seven-point scale. This is because you do not have the 
information needed to regain that level of sensitivity. 



Report Writing 
The beauty of scientific studies is the ability to convert data to information that advances human 
learning either by supporting or rejecting earlier theories and hypotheses.  This can only be 
achieved through the art of good report writing. Report writing is an art that must be mastered by 
every student in order to be able to translate research findings into recommendations. Often 
student fail woefully not due to poor experiment but due poor reporting. This becomes evidence 
during seminar presentation and project write-ups. 

A good report must convey the followings: 

- The rationale for the study 
- The methods used 
- The results/findings 
- Conclusiom 

 

Rationale 

In any study there must be convincing reasons for the study. This is because research involves 
human resources, time and energy as such it is nonsensical to conduct a research without a good 
justification or rational. A good rational must state there underlining reasons for this research and 
the advances it would make if conducted. For example consider a study to investigate the 
prevalence of HIV in Abeokuta. The question to ask is why must we know the prevalence of 
HIV in Abeokuta? There many be lots of rationales for these. It could be that we do not have 
such information, or we would wan to advocate for more intervention in HIV, perhaps we are 
curious to know if there are more HIV prevalence in male or female or in children. These are 
good rationale for your study. 
 
The rationale will lead to the objective of the study. 

Methods 

In any study there must be testable methods that are reliable, repeatable and verifiable. A good 
report must provide clear methodology of the study that can be easily followed by another 
research any way in the world. Often research who do not disclose their methods sufficiently are 
not only killing research but are also undermining them self. If you want to hide information, 
hide your results and not your methods. All methods must be repeatable. 

Results/Findings 

Converting data into meaningful information is the hallmark of good reporting.  Decide on the 
best methods to convey this information as simple as possible. Your results need not to be 
confusing. If a table will better convey more information than a chart, then use a table. 



Sometimes you are limited to type of presentation by the kind of variables in the study. Result 
must address stated objectives of the study. Statistical inferences must be properly stated and any 
significant relationship must be vigorously justified. Poor statistical report is very dangerous as it 
could give false conclusion. Student must not “pad” data to move toward a predetermine 
conclusion just to impress their supervisors  

Conclusion 

A good report comes with a sound conclusion. A conclusion essential restated key findings and 
recommendation either for further study or accept or reject a hypothesis. The conclusion must 
justify why the study was conducted. 

 

 


