CHM 101 LECTURE NOTE

COURSE TITLE: INTRODUCTORY PHYSICAL CHEMISTRY CREDTT UNTT: 03

PART TITLE:
CHEMICAL EQUILIBRIUM

COURSE LECTURER:
DR.S.A. AHMED

COURSE SYNOPSIS

- Thecancept of equilibrium
- Equilibrium Law(Lawof Mass adion)
- Reationshipbaween K_{p} and K_{c}
- Reationshipbetwean $\Delta \mathrm{G}$ and K
- Effect of temparaturean theequilibrium constant.
- Hamogenaus demical equilibria
- Heterogeneaus equilibria system
- Fadtrs affecting equilibrium canstants
- Chemical equilibrium in sdution
- weter dissociation constant
- hydrdysis and hydrdysis constant
- Sdubility equilibria
- Camman-ian effects

RECOMMENDEDTEXTBOOKS/ REFERENCES

1. Principleof physical demistry by J.M. Gross
2. Physical dhemistry by Atkins
3. Essentials of physical chamistry by Bahl and Bahl
4. Chemistry: Thecentral scienceby Brown, Lemay, Bursten and Murphy.
5. Physical demistry by K.K. Shamma and L.K. Shama

Conceqt of Equilibrium

Cansider this diret readion,
$\mathbf{a A}+\mathbf{b B} \quad \rightarrow \quad \mathbf{C}+\mathbf{d D}$
Theremdion stqpos when theremdants areused up
Howere, for a reversidereation likethis
$\mathbf{a A}+\mathbf{b B} \rightleftarrows \boldsymbol{C}+\mathbf{d D}$
theequilibrium is attained when therateof faward rexdian is equal totherateof backward rextion.

Chemical equilibrium is thestateof a reversiblerextion when thetwoqpposing remdians ccaur simultaneausly.

At equilibrium, theconcentrations of rexdants and prockucts dond drangewithtime

TheEquilibrium Law(Lawof Mass adion)

Thelawstates that "at constant temprature, therateat which a substancereats is diredty propational totheactivemasses of theremant'"

Adivemass is a themodynamic quantity and it is eqpessed $a=f$, wherea -adivemass, f-adivity coffidient (fugadity), c- mdar concentration.

For ideæl gaseaus and sdution reation, $f=1$
Therefore, theadivemass is equal tomdar cancentration.
According tothelaw, $R_{f} \alpha[A]^{a}[B]^{b}$

$$
\Rightarrow \quad R_{f}=K_{f} \quad[A]^{a}[B]^{b}
$$

Alsq $\quad R_{b} \alpha \quad[C]^{c}[D]^{d}$

$$
\Rightarrow \quad R_{b}=K_{b}[C]^{c}[D]^{d}
$$

At equilibrium, $K_{f} \quad[A]^{a}[B]^{b}=K_{b} \quad[C]^{c}[D]^{d}$

$$
\frac{K_{f}}{K_{b}}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}=K_{c}
$$

K_{c} is theequilibrium canstant in term of cancentration, In term of adivities,

Theconcept of adivity addresses thedeviation fram idel behaviar. Therefore it can bedfined as an ideflized concentration. K_{A} is exad and does not deqpend an pressure

In term of pressure

where $P_{A}^{a}, P_{B}^{b}, P_{C}^{c}$ and P_{D}^{d} arethe partial pressureof variaus gasedus speies at equilibrium.

Redationshipbetween K_{p} and $K_{\text {c }}$

In a gaseaus readion, theconcentration of thegases at any given tempis expressed in term of their partial pressures.

Consider this gaseaus readian
$\mathbf{a A}_{(\mathrm{g})}+\mathbf{b B}_{(\mathrm{g})} \quad \rightleftarrows \mathrm{C}_{(\mathrm{g})}+\mathrm{dD}_{(\mathrm{g})}$,
theequilibrium constant in term of pressureis expressed as

$$
K_{p}=\frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}} \quad \text { where } P_{A}^{a}, P_{B}^{b}, P_{C}^{c} \text { and } P_{D}^{d} \text { arethe }
$$

partial pressureof variaus gasedus spaies at equilibrium.
Hovever, K_{p} and K_{c} arende numerically equal, the redatianshipcan bederived as fdlow

For an idell gases,

$$
\begin{aligned}
& P V=n R T \\
\Rightarrow \quad & P=\frac{n}{V} R T
\end{aligned}
$$

$$
\text { But } \frac{n}{V}=C
$$

$$
\therefore \quad P=C R T
$$

$$
K_{p}=\frac{C_{C}^{c}(R T)^{c} C_{D}^{d}(R T)^{d}}{C_{A}^{a}(R T)^{a} C_{B}^{b}(R T)^{b}}
$$

$$
=\frac{C_{C}^{c} C_{D}^{d}(R T)^{(c+d)}}{C_{A}^{a} C_{B}^{b}(R T)^{(a+b)}}
$$

Recall that

$$
\begin{aligned}
& K_{c}=\frac{C_{C}{ }^{c} D_{D}{ }^{d}}{A_{A}{ }^{a} B_{B}{ }^{b}} \\
\therefore \quad & K_{p}=K_{c}(R T)^{\Delta n}
\end{aligned}
$$

Where $\Delta n=(c+d)-(a+b)$ i.ednangein theamount of gaseaus reagents

When Δn is positive \Rightarrow thenumber of mdeales of products arelarger than thoseof theremdants i.e $K_{p} \succ \mathrm{~K}_{\text {c }}$

When Δn is zera, \Rightarrow thenumber of mdeales of products $=$ thenumber of mdeaules of thereatants i.e $K_{p}=K_{\text {。 }}$

When Δn is negative \Rightarrow thenumber of mdeales of prockucts aresmaller than thoseof theremdants i.e $K_{p} \prec \mathrm{~K}_{c}$

If theequilibrium constant is expressed in term of mode fractions, X it is redated to K_{p} by

$$
\begin{gathered}
K_{p}=\frac{\left(X_{C} P\right)^{c}\left(X_{C} P\right)^{d}}{\left(X_{A} P\right)^{a}\left(X_{B} P\right)^{b}} \\
K_{p}=\left(\frac{\left(X_{C}\right)\left(X_{D}\right)}{\left(X_{A}\right)\left(X_{B}\right)}\right) \times P^{(c+d)-(a+b)}
\end{gathered}
$$

$$
\therefore \quad K_{p}=K_{x} P^{\Delta n}
$$

where $\Delta n=(c+d)-(a+b)$

Redationshipbetween Δ G and theequilibrium constant

Thedhangein freeenergy of a remdion and theequilibrium constant K arerdated toemd other by theexpressions

$$
\Delta \mathrm{G}^{o}=-R T \ln K
$$

Temparaturedapandencean theequilibrium constant

Thevalueof equilibrium constant varies with temparature dhange Therdationshipbetween theequilibrium constants at twodifferent tempratures and theenthal py dhangeis given by

Where $K_{p_{2}}$ and $K_{p_{1}}$ aretheequilibrium constants at temparature T_{2} and T_{1} respectively.

In tems of dangein intemal enegy (ΔE°), theequation becames

$$
\log \frac{K_{p_{2}}}{K_{p_{1}}}=\frac{\Delta E^{o}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T \times{ }_{1} T_{2}}\right]
$$

