HOMOGENOUS CHEMICAL EQUILIBRUM

Homogenous equilibrium is an equilibrium in which the reactants and the products are in the same phase.

-Homogenous gaseous equilibria

Case I: The Hydrogen-lodide system

Consider a reaction

A +B ← 2C

e.g
$$H_{2(g)} + I_{2(g)} \longrightarrow 2HI_{(g)}$$

t=0	а	b
t=0	а	b

o-x 2x	
)-x 2x

if V (in dm³) is the total volume of the reaction mixture

then,
$$\frac{a-x}{V}$$
 $\frac{b-x}{V}$ $\frac{2x}{V}$

Hence,
$$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right]\left[I_{2}\right]} = \frac{\left(\frac{2x}{V}\right)^{2}}{\left(\frac{a-x}{V}\right)\left(\frac{b-x}{V}\right)}$$

$$K_c = \frac{4x^2}{(a-x)(a-b)}$$

$$K_c$$
 is independent of the volume

In term of partial pressure,

$$K_p = \frac{P_C^2}{P_A \times P_B}$$

But

t
$$P_A = \frac{n_A}{N} \times P$$
, $P_B = \frac{n_B}{N} \times P$ and $P_C = \frac{n_C}{N} \times P$

Where $N = n_A + n_B + n_C = \text{total number of moles},$

 $P = \text{total (external) pressures } P_A, P_B \& P_C \text{ are partial pressures of A, B and C respectively.}$

$$\therefore \quad K_p = \frac{\left(\frac{n_C}{N} \times P\right)^2}{\left(\frac{n_A}{N} \times P\right) \times \left(\frac{n_B}{N} \times P\right)} = \frac{n_C^2}{n_A + n_B}$$

Examples:

1. A mixture of 1 mole of H_2 and 1 mole of I_2 in a flask was heated until the equilibrium is reached. On analysis, the

equilibrium mixture is found to contain 0.7 mole of HI. Calculate the K_c

- 2. Consider this reaction $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ Given that the partial pressures of the following substances at 45°C are $P_{H_2} = 0.065$ atm, $P_{I_2} = 0.45$ atm. and $P_{HI} = 0.245$ atm. Calculate (a) the equilibrium constant K_p for the reaction at 45°C (b) the equilibrium constant K_p for the backward reaction
- 3. K_c for this reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow SO_{3(g)}$

at 727°C is16.7, calculate K_p for this reaction at 727°C.

N.B- Solutions to these examples shall be treated during the lecture hours

Exercises:

1. The K_p for this equilibrium reaction:

 $NH_4Cl_{(s)} \iff NH_{3(g)} + HCl_{(g)}$ is 0.11 at 25°C,

calculate K_c at this temperature.

^{2.} The following results were obtained during analysis of a

reaction $CO_{2(g)} + H_{2(g)} \leftarrow CO_{(g)} + H_2O_{(g)}$

3. At 25°C and 4 atm., PCl_5 is 10% dissociated, calculate the K_p for this reaction, $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$

<u>Case II:</u> A \rightarrow 2B

••••

e.g. Decomposition of N_2O_4 , i.e. $N_2O_4 \iff 2NO_2$

$$K_{c} = \frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]} = \frac{\left(2x/V\right)^{2}}{\left(\frac{a-x}{V}\right)}$$

$$K_c = \frac{4x^2}{(a-x)V}$$

In term of K_p,

$$K_{p} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}}$$

Also, while considering the equation, if x represent the degree of dissociation, then 2x of NO₂ will be produced, then 1-x of N₂O₄ will be left. then, the total number of moles present at equilibrium = (1-x) + 2x=1+x.

$$\therefore P_{N_2O_4} = \left(\frac{1-x}{1+x}\right)P_{\&} P_{NO_2} = \left(\frac{2x}{1+x}\right)P$$

$$K_{p} = \frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}} = \frac{\left[\left(\frac{2x}{1+x}\right)P\right]^{2}}{\left(\frac{1-x}{1+x}\right)P}$$

S0,

$$K_p = \frac{4x^2 P}{1 - x^2}$$

Examples:

- 1. N₂O₄ at 1 atm and 25°C dissociated by 18.5%, calculate its K_p at this temperature. If the atmospheric temperature was reduced to half its original value at the same temperature, calculate the degree of dissociation of the gas.
- 2. N₂O₄ is 25% dissociated at 30₀C and 1 atm., calculate
- (a) The equilibrium constant for the decomposition
- (b) The amount of NO₂ that would be attained if there had been 4 moles of N₂O₄ at the same temperature and pressure.
- N.B- Solutions to these examples shall be treated during the lecture hours

Exercises:

- 1. N₂O₄ is 25% dissociated at 37°C and 1 atm., calculate
 - (i) The K_p and (ii) the % dissociation at 0.1 atm and 37°C
- 2. An equilibrium mixture at 27°C contains N₂O₄ and NO₂ having 0.28 atm. and 1.1 atm. pressures respectively. If the volume of the container is doubled, calculate the new equilibrium pressure of the gases.

$\underline{\text{Case III:}} \qquad A + 3B \iff 2C$

e.g. synthesis of Ammonia

$$N_{2(g)} + 3H_{2(g)} \iff 2NH_{3(g)}$$

$$\frac{a-x}{V} \qquad \frac{b-x}{V} \qquad \frac{2x}{V}$$

$$K_{c} = \frac{\left[NH_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}} = \frac{\left(\frac{2x}{V}\right)^{2}}{\left(\frac{a-x}{V}\right) \times \left(\frac{b-x}{V}\right)^{3}}$$

$$\therefore \qquad K_{c} = \frac{4x^{2}V^{2}}{(a-x)(b-x)^{3}}$$

Also,

$$K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \times P_{H_{2}}^{3}}$$

Examples:

- 1. In an experiment, H₂ and N₂ in the mole ratio 3:1 produced 0.0735mole fraction of NH₃ at 350°C and total pressure of 1013KNm⁻². Calculate Kp for the forward and reverse reactions
- 2. The K_p for this equilibrium reaction

 $N_{2(g)} + 3H_{2(g)} \iff 2NH_{3(g)}$ is 1.45 x 10⁻⁵ at 500°C. Calculate the partial pressure of NH₃ when the partial pressure of H₂ is 0.928atm and that of N₂ is 0.432atm.

Exercise:

- 1. The dissociation pressure of CaCO₃ is 342mmHg at 840°C and at 860°C, the dissociation pressure is 420mmHg. Calculate the heat of dissociation of the carbonate. Given that R=8.314KJmol⁻¹.
- 2. consider this reaction

 $N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g),$ The K_p is 1.64x10⁻⁴ at 400°C. calculate (i) the Δ G of the reaction (ii) Δ G when the partial pressure of N₂, H₂ and NH₃ are 10atm, 30 atm and 3 atm respectively.

HOMOGENOUS (LIQUID) EQUILIBRIA

$$A_{(l)} + B_{(l)} \iff C_{(l)} + D_{(l)}$$

e.g. $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \iff CH_3COOC_2H_5_{(1)} + H_2O_{(1)}$

$$\therefore \qquad K_c = \frac{x^2}{(a-x)(b-x)}$$

The equation above is the general expression for the liquid equilibria. However, in the example above where water molecule is involved, the expression can be written as

$$K_{c} = \frac{\left[CH_{3}COOC_{2}H_{5}\right]\left[H_{2}O\right]}{\left[CH_{3}COOH\right]\left[C_{2}H_{5}OH\right]}$$

The above expression is written in term of K_c because the concentration of water is taken to be constant, K_c has the unit of $[Concn]^{-1}$ but K_c has no unit.

Example:

- 1. In an esterification process between 1 mole of ethanoic acid and 1 mole of ethanol at 25°C, 66.7% of the acid is esterified calculate the equilibrium constant and ΔG° .
- 2. When 1 mole of ethanoic acid and 1 mole of ethanol were heated together at a temperature of 25°C until the equilibrium is reached. Titration of the reaction mixture shows that 2/3 of the acid have been used up. Calculate the equilibrium constant.

HETEROGENEOUS EQUILIBRIA SYSTEM

Heterogeneous equilibrium is an equilibrium in which the reactants and the products are not in the same phase.

e.g. $3Fe_{(s)} + 4H_2O_{(g)} \longrightarrow Fe_3O_4_{(s)} + 4H_2_{(g)}$

$$K_{c} = \frac{\left[Fe_{3}O_{4}\right]\left[H_{2}\right]^{4}}{\left[Fe\right]^{3}\left[H_{2}O\right]^{4}} = \frac{1 \times \left[H_{2}\right]^{4}}{1 \times \left[H_{2}O\right]^{4}} = \frac{\left[H_{2}\right]^{4}}{\left[H_{2}O\right]^{4}}$$

N.B: the concentration of substances in solid phase is taken to be unity.

In term of K_p,

$$K_{p} = \frac{P_{H_{2}}^{4}}{P_{H_{2}O}^{4}}$$

Exercises: Express the equilibrium constants K_{p} , for the following reactions.

1. CaCO _{3(s)}	←	$CaO_{(s)} + CO_{2(g)}$
2. 2H ₂ O _(I)		$2H_{2(g)} + O_{2(g)}$
3. NH ₄ CI _(s)	\leftarrow	$NH_{3(g)} + HCI_{(g)}$

Le-Chatelier's Principle

It states that "if a chemical system is in equilibrium and one of the factors involved in the equilibrium is altered, the equilibrium will shift, so as to neutralize the effect of the change".