
    
 CHM 331 

 
PHYSICAL CHEMISTRY III 

 
PART B 

 
MAXWELL – BOLTZMAN’S STATISTICS 
 
Boltzmann distribution represents the most probable configuration of energy for a molecular 
system at equilibrium. It is used to derive important thermodynamics properties of the system.  
The distribution of energy associated with the dominant configuration is known as Boltzmann 
distribution.   
Introduction 
Configuration is a general arrangement of total energy available to the system available to the 
system. 
A microstate is a specific arrangement of energy that describes the energy contained by each 
individual oscillator. Microstates are equivalent to permutations. 
Energy levels for oscillators are given by  
 

E ν = h ν (n + ½),     n = 0, 1, 2 ----    (i) 
 
ν = oscillator frequency  
n = quantum number associated with a given energy level of the oscillator.  
A modified version of the harmonic oscillator is given as  
    

E n = h ν n,              n = 0, 1, 2 ----    (ii) 
 
For a ground state energy n = 0 
Microstates and Configurations 
By extending the concept of probability theory to chemical systems, the configurations with the 
largest number of corresponding permutations is the most probable configuration. 
 

PE = E/ N,  
 

Where, PE = probability of the configuration trial outcome 
E = number of permutation associated with the event of interest. 
N = total number of possible permutations 
The most likely configurationally outcome for a trial is the configuration the greatest number of 
associated permutations. 
 
Number of microstates =  !

! ! ! !
 =  !

∏  !
     (iii) 

 
an = occupational number , it describes the number of units occupying a given energy level e.g. 
in the configuration 3, 0, 0, a0 = 2, a3 =1, and all other an = 0 which is 0!, = 1. 
The probability of observing a configuration is given as  



   Pi =  
 

 = 
∑

    (iv) 

 
Configuration with the largest weight is called the predominant configuration. 
 
Dominant configuration = dln W/d X = 0      (v) 
 
The sum of all probabilities is unity 
 

P1 + P2 + ---+Pm = ∑ 푃푖 = 1 = 푃푡표푡푎푙  (vi) 
 
Pi = 1/n , n = total number of variables 
 
PE  = 1/N = 1/N +⋯+ = J/N  = E/N   (vii) 
 

For a series of manipulations M1, M2... Mj having nj ways to perform the entire series 
manipulations, the total number of ways to perform the entire series of manipulations (total M) is 
    Total M = (n1)(n2)...(nj)     (viii) 
 
Total number of permutation = n! of n objects. 
 
P (n, j) represents the number of permutations possible using a subset of j objects from the total 
group of n, 
 

P (n, j) = n (n – 1).... (n – j + 1) =  ( )….( )
( )( )…( )

= !
( )!

    (ix) 
 

Configuration is an unordered arrangement of objects manipulated = n  
Subset of objects = j 
 
Configuration is   C (n, j) = P (n, j)/ j!  = !

( )!
    (x) 

 
Stirling’s Approximation 
 

 Provides a simple method of calculating the natural log of N! It is written as  

ln N! = N ln N – N    (xi) 
it is derived as follows; 

ln N! = ln [(N) (N- 1) (N – 2)---(2)(1)] = ln [(N)+ ln (N- 1) + (N – 2) +---+ln(2)+ ln (1)]  
= ∑ ln푛 = ∫ ln(푛)푑푛 = N ln N – N – (1ln 1 – 1) = N ln N – N   
 (xii) 

Derivation of Boltzmann distribution 
Dominant configuration =  = 0 

  ln W = ln N! – ln ∏ 푎푛!  = N ln N -   
   



By differentiation,  
 

푑푙푛 푊
푑푎푛  =  

푑푁
푑푎푛 ln푁 + 푁

푑푙푛 푁
푑푎푛 − 푑(푎 푛 ln푎n)/푑푎 

 
    N = ∑푎 푛 
 
Applying this to the energy spacing; 
 

BD = 푒 =  푒 =  푒  (1)     
      

The partition function is the summation over the energy levels 

q = ∑ 푒  = 1 + 푒    +푒  + ⋯ =  = 1.58   (2) 

For x <1,   = 1 + x +x2 +... 

The probability of an oscillator occupying the first three levels 0, 1, 2, is 

P0 =  = e-0 / 1.58 = 0.633 

P1 =  = e-1 / 1.58 = 0.233 

P2 =  = e-2 / 1.58 = 0.086 

Partition function provides a measure of the number of energy levels of that are occupied for a 
given value of β. Atomic and molecular systems have degenerate energy levels 

q = ∑ 푔푛푒  

Pi =  

The canonical partition function is defined as 

Q = ∑ 푒  

Q = ∑ 푒  =  ∑ 푒 ( )  

EAn and EBn  are energy levels associated with unit B respectively 

Assuming that the levels are quantized, 



Q = ∑ 푒 ( ) = 푒 ( ) + 푒 ( ) + 푒 ( ) +... + 
푒 ( ) + 푒 ( ) + 푒 ( ) + ... + 푒 ( ) + 푒 ( ) + 
푒 ( ) + ... 

= ( 푒   + 푒  + 푒   +…  휒푒   + 푒   + 푒   + ...) =  (q A) (q B) = q2  

 Q = qN   for N distinguishable units 

The quantized energy levels of the molecular/atomic system are embedded in the molecular 
partition function, q, and this partition function can be used to define the partition function for 
the ensemble Q which can be directly related to the thermodynamic properties of the ensemble. 

Q = qN/N!   For N indistinguishable units 

P(Ei) = Wi     

gn represents the number of states present at a given energy level i.e. the degeneracy of the 
levels. 

β is defined as; 

    d ln W =  βdE 

β is the proportionality constant in the above relationship, the unit β is the inverse energy 

if βx and βy are β values associated with the initial ensembles  x and y. dEx and dEy refer to the 
change in total energy for the individual assemblies. 

dE x+ dEy = 0 

if dEx is positive, then βx ≥ βy  . 

In thermodynamics, temperature is a measure of internal kinetic energy, therefore, an increase in 
the energy will be accompanied by an increase in temperature of assembly x so before 
equilibrium is established, thermodynamic consideration dictates that  

     Ty ≥  푇x   

β is inversely related to T.  

β = 1/k T 

k is Boltzmann’s constant = 1.381 x 10-23 JK-1 
Physical meaning of the Boltzmann distribution law 

 All microstates are equally probable; with a microstate associated with the dominant 
configuration. 



 Configurations having a significant number of microstates are only infinitesimally different from 
the dominant configuration. The macroscopic properties of the system will be identical to that 
of the dominant configuration.   

  The macroscopic state of the system is called the equilibrium state 

 The equilibrium state is of the system is characterized by the dominant configuration 

 The Boltzmann distribution law describes the energy distribution associated with a chemical 
system at equilibrium. 

MOLECULAR ENERGY LEVELS 
 
The molecular partition function can be evaluated by considering molecular energy levels. For 
polyatomic molecules, there are four energetic degrees of freedom to consider in constructing the 
molecular partition function: 
 

 Translation 

 Rotation 

 Vibration 

 Electronic 

Assuming the energetic degrees of freedom are not coupled, the total molecular partition 
function that includes all of these degrees of freedom can be decomposed into a product of 
partition functions corresponding to each degree of freedom. 
If ε total represents the energy associated with a given molecular energy level. This energy will 
depend on the translational, rotational, vibrational, and electronic level energies as follows:            
ε total = ε T + ε R  + ε V + ε E Using the expression for the total energy and substituting into the 
expression for the partition function, the following expression is obtained: 

    qTotal = Σ g Total 
e-βε 

Total 
     = Σ (gT gR gV gE)e-β(ε

T 
+ ε

R
 + ε

V
 + ε

E
) 

     = Σ (gT
e-βε

T) (gR
e-βε

T) (gR
e-βε

R) (gv
e-βε

V) (gE
e-βε

E) 
     = qT qR qV qE 

The total molecular partition function is simply the product of partition functions for each 
molecular energetic degree of freedom. Using this definition for the molecular partition, the final 
relationships of interest are 

                                           QTotal = qN
Total  (distinguishable) 

                                            QTotal = ! Q
N

Total  (indistinguishable) 

Translational energy levels correspond to the translational motion of atoms or molecules in a 
container of volume V. By employing a one-dimensional model, from quantum mechanics, the 
energy levels of a molecule confined to a box were described by the “particle-in-a-box” model. 

                           QT, 1 D=∑n=1e  

The summation consists of an infinite number of terms. The spacing between energy 
translational energy states is considered. Because numerous translational energy levels are 



accessible at room temperature, the summation, in the equation, above can be replaced by 
integration with negligible error: 
 
                         QT = ∑e-βan2 =∫e-βan2 dn 
 
In this expression, the following substitution was made to keep the collection of constant terms 
compact: 

      ∝=  
The integral in equation is evaluated as; 

                        QT =∫e-βan2 dn= √  

Substituting for α, the translational partition function in one dimension becomes 
 

 QT, 1D = ( ) 1/2 α 
 

This expression can be simplified by defining the thermal de Broglie wavelength, or simply the 
thermal wavelength, as follows: 
 

                         = ( ) 1/2 

Such that          

                      q T, 1D = 
⋀

 = (2πmkT)1/2  

Referring to  as the thermal wavelength reflects the fact that the average momentum of gas 
particle, p, is equal to (mkT) 1/2. Therefore,  is defined as h/p or the deBroglie wavelength of the 
particle.  The three-dimensional translational partition function is the product of one- 
dimensional partition functions for each dimension: 
 

                          QT, 3.d =QTx QTy QTz 

                                   =
⋀ ∧ ∧

 

                                   =
∧

3 ax ay az 

                                                      = ∧
3 v 

Where v is volume and Λ is the thermal wavelength.  The translation partition is a function of 
both V and T. The increase in qT with volume reflects the fact that as volume is increased, the 
translational energy – level spacings decreased such that more states are available for population 
at a given T. Given the small energy spacings between translational energy levels relative to k T 
at room temperature, it is expected that at room temperature a significant number of translational 
energy states are accessible.  The magnitude of the translational partition function  

q T  in three dimension is written as;   
 
⋀  

  

 
Λ 3 =( ℎ  β/2πm)3/2  



The translational contribution to the internal energy is given as; 
 

UT = 3/2 NkT = 3/2 Nrt 
 

ROTATIONAL PARTITION FUNCTION FOR DIATOMIC MOLECULES 
A diatomic molecule consists of two atoms joined by a chemical bond. In treating rotational 
motion of diatomic molecules, the rigid rotor approximation is employed. The bond length is 
assumed to be constant during rotational motion and centrifugal distortions are neglected.  
 
E j is dependent on the rotational quantum number J 
 

E j = BJ (J + 1) for J = 0, 1, 2,... 
 
B is the rotational constant and is defined by 

 B =  
 

I is the moment of inertia is written as I = µr2 

 
µ =  
 
q R = ∑ 푔  푒 ( ) 
 
q R = ∑ (2퐽 + 1) 푒 ( ) 
 

By assuming that the rotational energy – level spacings are small relative to k T, the rotational 
partition function evaluated by integration over the rotational states; 
 

q R = ∫ (2퐽 + 1)  푒 ( ) 

      = 풅
풅푱

  −휷hcB(2J + 1) 푒 ( ) 
 
The rotational partition function is written as;  
 
    q R =  =   
 
To correct for over counting the symmetry number σ is incorporated into the expression of the 
rotational partition function  
 

q R =  =   
 

 Discuss how to calculate σ in class 
 

Rotational temperature; R =   



 
Therefore;  q R =  = =  
 

The internal energy from rotation is given as; 
 
UR = NkT = nRT for linear atomic polyatomic molecules 
 
UR =  3/2 nRT for non - linear polyatomic molecules 
 
VIBRATIONAL PARTITION FUNCTION  
 
The energy levels of the harmonic oscillator are as follows; 
 

En = ℎ푐 ѵ (n + ½)  
 

The vibrational partition function is written as; 
 

qv =  
ѵ/

ѵ    (with zero point energy) 
 
qv =  ѵ    (without zero point energy) 
 

Vibrational temperature; v = ѵ is defined as the frequency of a given vibrational  
 
degree of freedom divided by k. Thus the vibrational partition function is written as;  
 

qv =  ѵ  = ѵ/
 = 

ѵ/
 

 
 becomes smaller as T and qv increases. In the high temperature limit qv becomes 

 
qv = 

Ѳѵ
 

The vibrational contribution to the average energy is; 
 

UV =    ѵ 
ѵ  

    
 
UV = N/β = NkT = nRT 
 
 

ELECTRONIC PARTITION FUNCTION 
 

En =  
    

  (n = 1, 2, 3,..) 
 
q E  = ∑ 푔푛 푒  



 
if the energy level is very large compared to kT, q E  g0( the degeneracy of the ground state) 

E =  
 

Because electronic energy – level spacings are generally large compared to kT, the partition 
function is equal to the ground state degeneracy which is a constant, β is zero. Therefore, 

U g = 0  
 

THE EQUIPARTITION THEOREM 
 
This states that any term in the classical Hamiltonian that is quadratic with respect to momentum 
or position (p2 and x2) will contribute kT/2 to the average energy. i. e the change in energy 
associated with passing from one energy level to the other must be significantly less than kT. 
This true for translational and rotational degrees of freedom but not for vibrational degrees of 
freedom except at relatively high temperatures.  
Classical Hamiltonian in one – dimension is given as  
 
   H =  +   kx2 

 
HEAT CAPACITY 
Heat capacity at constant volume Cv = - k β2   v  
 
Translational heat capacity at constant volume is; 
 

(Cv)T = ( ) v = 3/2 Nk 
 

The rotational heat capacity is; 
 
(CV)R = Nk  (linear molecules) and 3/2 Nk for non linear molecules 
Vibrational heat capacity is given as; 
 

(CV)V =  Nkβ2 ( hc β2  ѵ  )2    ѵ 
 ( ѵ  )

 
 

Q electronic is equal to g.s degeneracy, average energy is zero. Cv at constant volume is zero. 
 
ENTROPY 
 
Boltzmann formula for entropy is  
  

S = k ln W  
 

Skipping several steps of derivation, 
 



S =  + k ln Q =   + ln Q 
 
S =     

 
 (kT ln Q) v  

 
Sackur – Tetrode equation 

 
S = n R ln      푹푻풆

ퟓ/ퟐ

휦ퟑ푷 푵푨 
 

                               
 Λ3 = (   

 
)3/2 

 

For an isothermal expansion of an ideal monatomic gas from initial volume Vi to a final volume 
Vf;  
 
∆ S = S final  - S initial =nR ln Vf/Vi  
  
At different temperatures T1 and T2 ; 
 
∆ S = S final  - S initial= 3/2 nR ln  = n Cv ln   
 

INTRODUCTION TO QUANTUM CHEMISRTY 
 

Quantum mechanics predicts that atoms and molecules can only have discrete energies and 
thereby provides a basis for understanding all spectroscopies. 
 It is useful for calculations of chemical properties of biologically important molecules that are 
useful in the design for specific applications before they are tsted in the laboratory. 
Technology is increasingly based on QM e.g. quantum computation that describes a state by zero 
or one is an active area of research. 
 
QUANTUM MECHANICS AND CLASSICAL PHYSICS  
 
Experimental evidence has been presented for two properties that distinguish Qm from classical 
physics. They are as follows 
 

 Quantization; energy at the atomic level is not a continuous variable, but comes in discrete 
packets called quanta 

 Wave – particle duality. Light waves have particle – like properties, and atoms and subatomic 
particles such as electrons have wave – like properties. 

 The experiments on blackbody radiation and the photo electric effects (photochemistry) 
describe the wave – particle duality of light. 

Classical physics predicted the following on photoelectric effect 
 



 Light is incident as a plane wave over the whole Cu plate and tit is absorbed by many electrons 
in the solid. 

 Electrons are emitted for all light frequencies provided the intensity of light is sufficient 

  The kinetic energy per electron increases with the intensity of light  

 The results of the experiment on photoelectric effect can be summarized as follows 
 

 The number of emitted electrons is proportional to the intensity of light, their kinetic energy is 
independent of the intensity of light 

 Electrons are emitted above the threshold frequency ѵ0 even at high intensities 

 The kinetic energy of the emitted electrons depends on the frequency 

 The law of conservation of energy holds 

Energy of light is proportional to its frequency. Einstein equation is 
 

E = Φ  , (Φ is a constant known as the Planck’s constant h) 
 

E = h  
 

Energy Ee of the electron is written as; 
 

Ee = Φ  – σ, (σ is the work – function) 
 

The result of the blackbody radiation is summarized as follows; 
 

SEE U IN CLASS  

 
 

Text/ further reading 
 
Physical chemistry by Thomas Engel and Philip Reid 
Physical Chemistry by Pw Atkins 

 
 
 

CHM 328 
 
MECHANISM OF ORGANIC REACTIONS 
 
CARBANIONS 
 



      The carbonyl can play the role as a functional group as well a substituent. The 
carbonyl group strengthens the acidity of the hydrogen atoms attached to the α-
carbon and by doing this gives rise to a whole set of chemical reactions. 
         Ionization of an α-hydrogen 

 
[Conjugate base of a carbon acid which loses its proton from carbon 
Carbanion I is a resonance hybrid of two structures 

 
 
     The carbonyl group effects the acidity of α-hydrogen in the same way it affects 
the acidity of carboxylic acids; by helping to accommodate the negative change on 
the anion. 
 

 
 



Stability is due to the fact that most of the charge is carried by oxygen and not 
carbon. 
     A carbanion which is stabilized by an adjacent carbonyl group is called an 
enolate anion; it is the conjugate base of the keto form of the carbonyl compound 
and its enolate form also. 
    

 
⇌∶ B + CH3C (OH)= CH2 
The susceptibility of the carbonyl group to nucleophilic attack is due to the ability 
of oxygen to accommodate the negative charge that develops as a result of the 
attack.  

Reactions involving carbanions: 
→ Carbanions are highly basic, so they behave as nucleophilic, thus they can 
attack carbon to form carbon-carbon bonds. 
→Aldol condensation- carbanion generated from one molecule of aldehyde/ ketone 
add as a nucleophile to the RC=O of second molecule of a ketone/aldehyde  
Mechanism of Aldol condensation: 
→Two molecules of aldehyde/ ketone with α-hydrogen atoms  react in the 
presence of dilute alkali to form β hydroxyl aldehyde or β hydroxyl ketone. 
 



 
Step 1: Formation of carbanion-hydroxide from a base abstracts a proton from the 
α-carbon atom to a carbanion which is stabilized by resonance. 
Step 2: Attack by the carbanion- the carbanion formed attacks the second molecule 
by nucleophilic addition mechanism to form an alkoxide ion. 
Step 3: Attachment of a hydrogen:- the alkoxide ion attaches a hydrogen atom 
removed from H2O molecule. 
Equation:-  

 
 
 
Claisen- Schmidt reaction 



→a crossed aldol condensation; involving condensation of aromatic carbonyl 
compound in the presence of a base. E.g  

 
 
Mechanism: 
Step 1: Formation of carbanion 
Step 2: Attack by carbanion on the aromatic carbonyl compound to form alkoxide 
ion. 
Step 3: Attachment of a proton 
Step 4: α-H atom in the hydroxyl compound is removed by the base, followed by 
OH group and ultimately H2O is removed 
 

 



 
 
 
Benzoin condensation 

 
Step 1and 2 as in other condensation reactions. 
Step 3, loss of CN- ion 
 

 
Perkins reaction 
Step 1-2 as in others 



Step 3: protonation of the alkoxide ion to form an aldol type compound. 
Step 4: dehydration, the hydroxyl group and neighbouring hydrogen are removed 
as water.  
Step 5: hydration 

 
 

 


