
CHM 441: QUANTUM CHEMISTRY 

SECTION A 

INTRODUCTION 

Quantum mechanics is a clear replacement of classical mechanics. Plank in 1990 showed that the 
description of the distribution of energies of electromagnetic radiation in a cavity requires the 
quantization of energy. Modern Chemistry relies on quantum mechanics for the description of 
most phenomenon. In the beginning of twentieth century, a number of experimental observations 
were made that could not be reconciled or explained by the laws of classical physics. E.g. Plank 
measured the emission of radiation from a hot mass (called blackbody radiation) and found that 
it did not fit the formula derivation from classical physics. To derive the right equation, he had to 
assume in contrast to classical physics ideas that radiation of frequency (�) is absorbed and 
emitted only in multiples of h� where h is a universal constant. 

In another experiment, it was discovered that the energy of an electron ejected from metals by 
the absorption of radiation (the photoelectric effect) depended only on the frequency of the 
radiation and not on intensity, again in contrast with classical ideas. Einstein in 1905 explained 
this by suggesting that light of frequency (�) consists of quanta of energy h�, called Photons. 
When one Photon strikes an electron in the metal, the electron is ejected with a kinetic energy 
that is, the difference between the energy of the photon and the minimum energy needed to eject 
the electron. 

In 1911, Rutherford showed that an atom has all its positive charge in a tiny nucleus with the 
electrons surrounding it, but this could not be understood using classical mechanics which 
predicted that the electrons would radiates energy and fall into the nucleus. 

Bohr in 1913 postulated the existence of stable orbits in atoms and the quantization of angular 
momentum which marks the beginning of quantum mechanics applied to atoms, but was unable 
to describe atoms with more than one electron. 

The underlying problem that emerged from these and other experiments was that electromagnet 
radiation shows properties that are both wavelike and particle-like. Experiments showing the 
interference of light must be explained with wave theory whereas that of photoelectric effect 
reveals particlelike principles. 

De Broglie in 1924 developed an equation for the wavelength of a particle by reasoning in terms 
of light. In 1926 Schrodinger published the wave equation for atomic and molecular systems. In 
1927 Heisenberg put forward an uncertainty principle implying that if the momentum of a 
particle is known precisely, the position of that particle is completely unknown. This is the new 
mechanics called quantum mechanics,  It challenged classical mechanics which states that the 
position and momentum of a particle can be calculated precisely at all times from knowledge of 



the forces on the particle. Photons which have energies given by E = h� are usual particles in 
that they have zero rest mass and travel with the speed of light. However, Einstein suggested that 
photons have a relative mass given by E= mc2. Equating these two equations for the energy of a 
photon yields. 

 E = mc2 = hv = hc/λ or E = mc2 = P = hc/λ...................................................[1] 

Where P = momentum of photon. 

By analogy de Broglie [1924] suggested that the momentum of a particle with finite rest mass is 
given by mv = P = h /λ or λ= h /p = h /mv................................. [2] 

Where m = rest mass 

     V= velocity and V = P /m......................................................................... [3] 

Equation [2] shows that all particles have a wavelike property with wavelength that is inversely 
proportional to the momentum. 

The energy of an electron is given as the product of elementary charge (e) and potential 
difference in Joules and the energy of an electron of mass (m) moving with a velocity v well 
below the velocity of light is given by  

E = (½)mv2 = P2/2m..............................................................................................[4] 

Total Energy of a Particle 

The total energy E of a particle is equal to the sum of its kinetics energy ((½)mv2) and its 
potential energy V. 

E = (½)mv2 + V = P2/2m +V  ..................................................................................(5) 

 

 

The Heisenberg uncertainty principle 

In 1927, Heisenberg formulated his principle that values of particular pairs of observables cannot 
be determined simultaneously with arbitrarily high precision in mechanics. Examples of pairs of 
observables that are restricted in this way are momentum and position, and energy and time; such 
pairs are referred to as ‘complementary’. 

The quantitative expressions of the Heisenberg uncertainty principle can be derived by 
combining the de Broglie relation P = h/λ and the Einstein relation E = h� with properties of all 
waves. 



The de Broglie wave for a particle is made up of a super position of an infinitely large number of 
waves of the form 

Ψ(x,t) = A sin 2π(x/λ – �t) 

         = A sin 2π(kx – �t).................................................................. (6)  

Where A is amplitude and k is the reciprocal wavelength .Let’s consider one spatial dimension 
for simplicity. The waves that are added together have infinitesimal different wavelengths. This 
superposition of waves produces a wave packed as shown below: 

Figures (a) and (b) 

By the use of Fourier integral methods, it is possible to show that for wave motion of any type 

∆x ∆k = ∆x ∆1/λ ≥ 1/4π..................................................................... (7) 

And ∆t ∆� ≥ 1/4π ............................................................................ (8) 

Where ∆x is the extent of the wave packed in space, ∆k is the range in reciprocal wavelength, ∆v 
is the range in frequency, and ∆t is a measure of the time required for the packed to pass a given 
point. 

Note that the ∆’s are actually standard deviations if at a given time the wave packed extends over 
a short range of x values; there is a limit to the accuracy with which we can measure the 
wavelength. If a wave packed is of short duration, there is a limit to the accuracy with which we 
can measure the frequency. 

One form of the Heisenberg uncertainty principle may be by substitution the de Broglie relation 
in equation [7]. Since 1/λ =Px/h for motion i x direction, then by substitution, 

∆x ∆Px/h ≥ 1/4π............................................................................. (9) 

And ∆Px  ≥ h/4π∆x....................................................................... (10) 

∆x ∆Px = ≥ ħ/2............................................................................... (11) 

Where ħ = h/2π and it is called ‘’h bar’’ 

The limitation to determine the simultaneous position and momentum of an electron is well 
understood. To determine the position of the electron at least photon would have to strike the 
electron, and momentum of the electron would inevitably be after in the process. This would 
definitely limit our ability to measure the momentum. If we use a photon of shorter wavelength 
to determine the position of the electron more accurately, the disturbance of the momentum is 
greater and ∆px is greater according to equation [11]. This same uncertainty applies to ∆y∆py 
and ∆z∆pz. 



Another form of the Heisenberg uncertainty principle may be derived by substituting E = hr in 
equation [8]. 

These yields: 

∆t ∆E/h ≥1/4π............................................................................................ [12] 

∆t∆E ≥ ħ/2................................................................................................... [13] 

The Schrödinger equation 

The time independent Schrödinger equation is written as: 

-(h2/8π2m)(d2/dx2 + d2/dy2 + d2/dz2)Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z) 

Or where Ψ = wave function in three dimention...............................................(14) 

-(h2/8π2m)     2 Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z)............................................. (15) 

      2 = del square = (d2/dx2 + d2/dy2 + d2/dz2)  

The time independent Schrödinger equation provides a means for calculating the wave function 4 
for a quantum mechanical particle, and the probability density is given by the product of the 
wave function with its complex conjugate. 

Note that the probability of finding the particle between x and x+dx is given by Ψ*(x)Ψ(x)dx 
where Ψ* is the complex conjugate of Ψ (The complex conjugate is found by changing i to 1 
everywhere in Ψ). This means that Ψ*(x)Ψ(x) is a probability density. 

For example, if Ψ is a complex number, it can be written as a+ib then Ψ* = a+ ib and Ψ*Ψ = 
a2+b2, which is clearly positive and real. We often write (Ψ)2 for Ψ*Ψ. With the interpretation of 
Ψ; the probability of finding the particle between x1 and x2 is probability  

(x1≤ x ≤ x2) = ∫ Ψ*(x)Ψ(x)dx....................................................................................................... (16) 
and since the probability of finding the particle anywhere on the x-axis must be 1. 

(-∞ ≤  x ≤  + ∞) = ∫ Ψ*(x)Ψ(x)dx = 1 in one dimension ......................................................(17) 

For this one-dimensional example, the units of  Ψ are m-1/2 to ensure that the probability is a pure 
number. If we were in considering a 3-dimentional system, the integral of (Ψ)2 over 3-
dimentional would be the probability of finding the particle anywhere in the space, which is 1. 

Then the wave function would have unit’s’ m-3/2. 

An atom or a molecule can be in any one of the stationary energy states e.g. nth, represented by 
its own wave function Ψn with energy En. 



The wave function contains all the information we can have about a particle in quantum 
mechanics.  

However for (Ψ)2 to be a probability density, all the 4’s must be ‘well behaved’ that is, have 
certain general properties. 

[a] They are continuous,  

[b] They are finite 

[c] They are single valued 

[d] Their integral ∫ Ψ* ΨdT over the entire range of variables is equal to unity. 

Note also that the differential volume is represented by dT. 

A wave function Ψi is said to be normalized if ∫ Ψi* ΨjdT = 1............................. [18] 

Two functions Ψi* and Ψj are said to be orthogonal if ∫ Ψi* ΨjdT = 0................. [19] 

These relations can be combined by writing  

∫ Ψi* ΨjdT = dy....................................................................[20] 

Where dy = kroncker delta, which is defined by 

d =   0 for i ≠ j              ........................................................................[21] 

        0 for i = j 

And the wave functions that satisfy equation [21] is said to be orthonormal.  

OPERATORS 

An operator is a mathematical operation that is applied to a function and in quantum mechanics 
there is a linear operator for each classical mechanical observable. When two operators 
commute, the corresponding variables can be simultaneously measured to any precision and 
when they do not commute, the corresponding observables cannot be measured as arbitrary 
precision  

e.g. d/dx is the operator that indicates that the function is to be differentiated with respect to x 
and � is the operator that indicates that the function is to be multiplied by x. Operators are 
designated with caret. E.g. Â or �. The symbol of the operator is placed to the left of the 
function to which it is applied. The operators of quantum mechanics are linear. A linear operator 
has the following properties:- 

Â (f1 + f2) = Âf1 + Âf2             ------------------------------------------------------------ (22) 



Â (cf) = cÂf              ------------------------------------------------------------------------ (23) 

Where c, is a number. The simplest operator is the identity operator Ê for which Êf = f 

An algebra linear operator will give Â3 = Â1 + Â3 or Â4 = Â1Â2 

Note that operator multiplication is different from the multiplication of numbers. 

Example:- 

Suppose � = d/dx, Ø = x and f(x) = x3; do the operators commute? 

Example 1: 

(a) Apply the operator Â = d/dx to the function x2 
(b) Apply the operator Â = d2/dx2 to the function 4x2 
(c) Apply the operator Â = (d/dy)x to the function xy2 
(d) Apply the operator Â = -iђd/dx to the function e-ikx 
(e) Using the same operators as in (d) apply the operator  

ÂÂ = Â2 = (-iђd/dx)( -iђd/dx) = ђ2d2/dx2 to the function e-ikx 

Solutions: 

(a) Â(x2) = d/dx(x2) = 2x 
(b) Â(4x2) = d2/dx2(4x2) = d/dx(8x) = 8x 
(c) Â(xy2) = [d/dy(xy2)]x = 2xy 
(d) Â(e-ikx) =  -iђd/dx(e-ikx) = i2kђe-ikx = -kђe-ikx 
(e) Â2(e-ikx) = -ђ2d2/dx2(e-ikx) = ђ2d/dx(e-ikx) = - i2k2ђ2e-ikx = k2ђ2e-ikx 

Example:- Given (Â� - �Â) = (Â,�), when (Â,�) = 0 the operators are said to commute. 

If  Â = d/dx  and � = x show whether or not  Â and � commute. 

Ans: ABΨ = d/dx(1/x)Ψ  = d/dx (4/x) = d/dx (4x-1) [d(u/v) = {vdu – udv} 

Schrodinger’s Equation and Operators 

Let’s rewrite the Schrödinger’s equation in equation [15] is in the form. 

-(h2/8π2m)     2 Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z)............................................. (24) 

Where the quantity in square brackets is called Hamitonic operator �. 

When an operator e.g. Â, operating on a function e.g. Øn yields a constant, Qn, multiply by that 
function i.e. ÂØn = QnØn.................................................................................... [25] 



We say that Qn is Eigen function of Â; with Eigen value Qn. Thus for the Schrödinger equation 
[24] Ψ(x,y,z) is the Eigen function of  Â with  Eigen value E  

Example: what are the Eigen functions and Eigen value of the operator d/dx? 

d/dx f(x) = kf(x), df(x)/f(x) = kdx, lnf(x) = kx+c 

f(x) = ecekx = c’ekx  

Where c and c’ are constants. For each difference value of k, there is an Eigen function. C’ekx or, 
to put it another way, the Eigen function c1e has the Eigen value k where k can be a complex 
number. 

The Black body Radiation (by plank) 

The blackbody radiation is  an evidence  that light exist as a form of particle. 

The body is a hollow object painted black, when the body is heated up, the electrons gain energy 
and emit radiation till the radiation comes out which we can measure. The intensity of the 
radiation increases with temperature, and also to the number of photons emitted while the energy 
is proportional to the frequency. 

E=hv = hc/λ 

And h = Eλ/c in Js  

The photo electric effect- by Hertz 

Hertz found that if one illuminates one of the electrodes of electric discharge system with light, 
the electric discharged increases. The intensity of current increases irrespective of the material of 
the electrode. 

The energy of the light is converted to discrete particles there is the pot energy to remove the 
electron on the nucleus of the metal surface and energy is also needed to move the electron. This 
is called photoelectron effect which is an evidence that light exist in waves. 

The total energy applied in converted into  

1.  Energy to remove the metal from the surface which is termed work function = � 

2.  The energy due to kinetic energy  

Etotal =  �Workfunction  + Ekinetic  

hν = hνo + 1/2mc2  



The energy responsible for the attraction of electron to the nucleus is a quantum which can be 
replaced by a radiation of light. 

A time will come when the kinetic Energy of electron will be equal to the voltage of meter and 
the energy will be eVo. 

Note that the threshold frequency is the minimum energy required to remove an electron  from 
the surface of the metal. 

Therefore, hν = hνo + 1/2mc2  

Where hνo = work function 

hν = hνo + eVo 

eVo = hν - hνo 

A plot of eVo against ν gives a straight line, the slope = h and -hνo is the intercept. 

Example:- A particular metal surface has a work function of 2.0eV. Calculate the expected 
maximum K.E of the electron if the wavelength of the incident photon is 4500Å, calculate also 
the threshold frequency. 

COMPTON EFFECT 

J.J. Thompson observed that whenever X-ray is allowed to strike a matter, the X-ray is scattered 
into  

(1) light that have the same wavelength with the incident photon with energy hv. 

(2) Light with shorter wavelength with that of the incident photon. 

This means that light wave is elastic and that electron in matter is bounded but moves about in 
stationery state in the matter. 

J.J. Thompson came up with the equation. 

λ1 – λ = h/moC [1- Cosθ].......................................................................... (26) 

Which relates the scattered light, incident angle and the Cosθ. The mo is n k by plotting λ’ – λ 
versus Cosθ, intercept = h/moC and slope = - h/moC. 

h/moC = 6.625 x 10-34/9.11 x 10-31 x 3 x 108  

           = 2.4241 x 10-12m 

 



Example  

If a photon of wavelength 0.2Å is scattered through an angle of 45o. What is the wavelength of 
the scatted light in Å and in metre? 

Particle in a one Dimensional Box 

An important problem to treat in quantum mechanics is that of a particle of mass m constrained 
to move in a one-dimensional box of length a. The potential energy V(x) is taken to be 0 for 0 � x 
� a and infinite outside this region in the figure  1. below ( not shown). We can see that this 
leads to quantized energy levels. 

In the region between x = 0 and x =a, then Schrödinger in equation (24) can be written as 

-(ђ2d2Ψ/2mdx2) = EΨ or d2Ψ/dx2 = -2mEΨ/ђ2 = -k2Ψ 

Where k = (2mE/ђ2))1/2 

Figure 1 ( not here): Potential for a particle in a one-dimensional box. The potential becomes 
infinite for x � a and x � 0, and is zero for  0 � x � a. 

 

En = h2n2/8ma2 , n = 1, 2 ---------------------------------------------------- (26).   

Therefore, a particle constrained to be between x = 0 and x = a, has quantised energy levels 
given by eqn. (26). As a gets large, the energy levels get closer together. In the limit of a very 
large box (or a very heavy particle), the energy levels are so close that the quantization may be 
unnoticeable. In the that a becomes very large, all energies becomes allowed (i.e. the allowed 
energies get very close together so that any energy is an Eigen value), together so the perfectly 
free particle can have any energy. 

A particle in a box cannot have zero energy because the lowest energy h2/8ma2 is given by 
equation (26) for n = 1. Although n = 0 satisfies the boundary conditions, the corresponding 
wave function is zero everywhere. The zero-point energy associated with the state n = 1 is found 
whenever a particle is constrained to a finite region; if this were not so the uncertainty principle 
would be violated. The next higher energy levels are at a four time (n=2) and nine time (n=3) this 
energy, as shown in fig.2. The wave functions are superimposed on this plot, and we can see that 
the wavelength is equal 2a/n.  

FIGURE 2 is not here 

Figure 2(a): Wave function Ψ and (b) Probability density function Ψ*Ψ for the lowest three 
energy levels for particle in a box. The plots are placed at vertical heights that correspond to the 



energies of the levels. As the number of nodes goes up, the energy goes up (c) The product of 
wave functions Ψ1*Ψ2 and Ψ1*Ψ3 plotted against x. 

Note that the normalized wave function for a particle in a one-dimensional box is 

Ψn = (2/a)1/2 Sin (nлx/a)x............................................................................... (27) 

Note that the probability density at point x is given by the square figure 2b of the wave function 
Ψ2 = (2/a) Sin2 (лx/a) given the probability densities Ψ*Ψ for a particle in an infinitely deep box. 
These are the probabilities per unit distance that the particle will be found at a given position. 
The most probable position for a particle in the zero-point level (n = 1) is in the centre of the 
box. Note that the Ψn are waves with wavelength λn = 2a/n, this means that Ψn is zero at value 
of x equal to an integral number of λn/2. These zeros are called nodes of the wave function. The 
more nodes in an eigen function, the higher its Eigen value of energy. For one-dimensional 
problem the number of nodes is n-1. 

As the value of n is increases, the probability density increases more and more, for very high 
values of n, there so many oscillations that the probability density becomes constant. Particles in 
a box wave functions are orthonormal i.e. 

(-∞ � x � +∞) = � Ψi*Ψjdx = 0 if i ≠ j. 

Which can be seen if we plot Ψi*Ψj for i ≠ j as a function of x in figure 2(c). We can see that the 
most probable position for the particles is in the middle of the box if the system is in the ground 
state, but it is more likely to be at a/4 or 3a/4 in the first excited state (n = 2) If we measure the 
position of a particle in a box, we would yet different answers in different trials. 

Lets define  E =  n2h2/(8ma2) ............................................................................. (28) 

Where n = 1, 2, 3..... is quantum number. The energy, E, can only have discrete values as shown 
in the above equation. This is an important result since the imposition of boundary conditions on 
the solution to the S.E results in the appearance of quantum numbers that restrict the energies to 
discrete values. This is then the source of the term quantum mechanics; the energies of the 
system are quantized. 

The solution we obtained now is Ψ(x) = A Sin (2mE/ђ2)1/2 x 

Which is not yet complete since we still need to determine the value of A. To solve this problem 
we normalise Ψ(x) because the probability of finding a particle, somewhere in space is one, for 
our case, all space is the dimension of the box because the particle is not allowed outside this 
region. 

(0 � x � a) = � Ψ*Ψ dx = � [A Sin (2mE/ђ2)1/2 x]2dx = 1 

Ψ* = Ψ because Ψ is real in this case where ђ2 =h2/4л2, E = n2h2/8ma2 


