Choose

$$
\mathrm{x}_{1}=1 \quad \mathrm{~F}\left(\mathrm{x}_{1}\right)=-1-\mathrm{ve}
$$

$\mathrm{x} 2=1 / 2\left(\mathrm{x}_{0}+\mathrm{x}_{1}\right)=1 / 2(0+1)=0.5$
$F(0.5)=-0.25$ is -ve
We neglect x_{1} and we have

$$
\mathrm{X} 3=1 / 2\left(\mathrm{x}_{0}+\mathrm{x}_{2}\right)=1 / 2(0+0.5)=0.25
$$

$$
\mathrm{F}(0.25)=0.3125-\mathrm{ve}
$$

We neglect x_{0} and we have

$$
x_{4}=1 / 2\left(x_{2}+x 3\right)=1 / 2(0.5+0.25)=0.375
$$

$$
\mathrm{F}(0.375) \text { is }+\mathrm{ve}
$$

We reject x_{3} and we have

$$
\begin{aligned}
& x_{5}=1 / 2\left(x_{2}+x_{4}\right)=1 / 2(0.5+0.375)=0.4375 \\
& F(0.4375) \text { is }-\mathrm{ve}
\end{aligned}
$$

We reject x_{2}, and have

$$
x_{6}=1 / 2\left(x_{4}+x_{5}\right)=1 / 2(0.375+0.4375)
$$

$\mathrm{F}\left(\mathrm{x}_{0}\right)=+1$
$\mathrm{F}\left(\mathrm{x}_{1}\right)=-1$

$\mathbf{X}_{\mathbf{0}}=\mathbf{9}_{\mathbf{n}}$	$\mathbf{x}_{\mathbf{1}}=\mathbf{b}_{\mathbf{n}}$	$1 / 2\left(\mathbf{x}_{\mathbf{0}}+\mathbf{x}_{\mathbf{1}}\right)$	$\mathbf{F}\left(\mathbf{c}_{\mathbf{n}}\right)$
0	1	0.5	$-0.25-\mathrm{ve}$
0	0.5	0.25	$0.3125+\mathrm{ve}$
0.5	0.25	0.375	$0.0156+\mathrm{ve}$
0.5	0.375	0.4375	$-0.12109-\mathrm{ve}$
0.375	0.4375	0.40625	

This is linear function $\mathrm{x}(\mathrm{y})$ with $\mathrm{x}\left(\mathrm{y}_{0}\right)=\mathrm{x}_{0}$ and $\mathrm{x}\left(\mathrm{y}_{1}\right)=\mathrm{x}_{1}$
The line intersects the x - axis at the point obtained by putting $\mathrm{y}=0$ in (3.4)

$$
\begin{aligned}
& x_{2} \frac{-y_{1}}{y_{0}-y_{1}} \quad x_{0}+\frac{-y_{0}}{y_{1}-y_{0}} x_{1} \\
& =\frac{x_{0} y_{1}-x_{1} y_{0}}{y_{1}-y_{0}}
\end{aligned}
$$

This may be re-written on a linear interpolation form as $x_{0} F\left(x_{1}\right)-x_{1} F\left(x_{0}\right)$ $\xrightarrow[\mathrm{F}\left(\mathrm{x}_{1}\right)-\mathrm{F}\left(\mathrm{x}_{0}\right)]{\ldots 3.5}$
This can also be written as

$$
\begin{array}{r}
\mathrm{X}_{2}=\mathrm{x}_{1}-\left(\mathrm{x}_{1}-\mathrm{x} 0\right) \mathrm{F}\left(\mathrm{x}_{1}\right) \\
\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{F}\left(\mathrm{x}_{0}\right)
\end{array}
$$

It may be repeated such that an iterative scheme results. As in the case of binary search (bisection rule) the two estimates slid give opposite signs in $\mathrm{F}(\mathrm{x})$.

The convergence in this method is faster than that in bisection rule.
Example $\quad F(x)=x^{2}-3 x+1=0$

$$
\text { Choose } \begin{aligned}
x_{0} & =0 \\
x_{1} & =1
\end{aligned}
$$

Since $F\left(x_{0}\right)$ is $+\mathrm{ve}=1$
and $F\left(x_{1}\right)$ is $-v e=-1$

$$
\begin{aligned}
& x_{2}=\frac{x_{0} F\left(x_{1}\right)-x_{1} F\left(x_{0}\right)}{F\left(x_{1}\right)-F\left(x_{0}\right)} \\
& x_{2}=\frac{0-1}{-1-1}=1 / 2=0.5
\end{aligned}
$$

$$
\mathrm{F}\left(\mathrm{x}_{2}\right)=\mathrm{F}(0.5)=(0.5)^{2}-3(0.5)+1=0.25-1.5+1=-0.25+\mathrm{ve}
$$

So, we reject x_{1}

$$
\begin{aligned}
& x_{3}=\frac{x_{0} F\left(x_{2}\right)-x_{2} F\left(x_{0}\right)}{F\left(x_{2}\right)-F\left(x_{0}\right)} \\
& x_{3}=\frac{0-0.5 x^{1}}{-0.25-1}=\frac{0.5}{1.25}=0.4
\end{aligned}
$$

$F\left(x_{3}\right)=F(0.4)=0.4^{2}-3(0.4)+1=-0.04 \quad-v e$
So, we reject x_{2}
$x_{4}=\frac{x_{0} F\left(x_{3}\right)-x_{3} F\left(x_{0}\right)}{} \begin{aligned} & \mathrm{F}\left(x_{3}\right)-F\left(x_{0}\right) \\ & x_{3}=\frac{0.4}{-0.04-1}=\frac{0.4}{1.04}=0.3846\end{aligned}$
$F\left(x_{4}\right)=(0.3846)^{2}-3(.3846)+1=-0.154$
And so on, we continue until convergence is achieved.

Assignment

Write a FROTRAN to illustrate the use of regula falsi to solve $x^{2}-5 x+1=0$.

4.0 ITERATIVE METHODS WITH DERIVATIVES

4.1 Order of Convergence:

Let α be a root of $\mathrm{F}(\alpha)=0$
$\alpha=F(\alpha)$
suppose the estimate α has error $\sum \mathrm{n}$

Comments:

1. Convergence is first order if $f^{\prime}(\alpha) \neq 0, f^{\prime \prime} \alpha=, \ldots,=0$
2. Convergence is second order if

$$
f^{\prime}(\alpha)=0 \text { and } f^{\prime \prime}(\alpha)
$$

3. Convergence is third order if

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\alpha)=0 \text { and } \mathrm{f}^{\prime}(\alpha) \\
& \mathrm{f}^{\prime \prime}(\alpha) \neq 0
\end{aligned}
$$

4.2 Newton-Raphson Method

From the figure, a is the point at which $f(x)=0$ and x_{0} is an estimate of a. the Newton Raphson method computes a new estimate, x_{1} in the following way:
This is the second order convergence.
Let x be a root of equation (3.1) $-\mathrm{F}(\mathrm{x})=0$
If x_{n} is the nth estimate with error \sum_{n},
then $\mathrm{x}=\mathrm{x}_{\mathrm{n}}+\sum_{\mathrm{n}} \ldots 4.1$
$\mathrm{F}(\mathrm{x})=\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}+\sum_{\mathrm{n}}\right)=0$
$=F\left(x_{n}\right)+n F^{\prime}\left(x_{n}\right)+\sum_{2!}^{2} F^{\prime \prime}\left(x_{n}\right)+\ldots+=0$

$$
\Omega \mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)+\sum_{\mathrm{n}} \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)=0 \mathrm{p}
$$

$$
=\sum_{\mathrm{n}}=-\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)
$$

$$
F\left(x_{n}\right)
$$

The iteration scheme in 4.1 becomes

$$
\mathrm{x}_{\mathrm{n}}+1=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)} \quad-\mathrm{N}-\mathrm{R} \text { method. }
$$

For example

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+2=0 \\
& \mathrm{~F}^{\prime}(\mathrm{x})=2 \mathrm{x}-4
\end{aligned}
$$

Therefore $\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\left(\mathrm{xn}^{2}-4 \mathrm{x}_{\mathrm{n}}+2\right)$

$$
2 x_{n}-4
$$

Using our former initial estimate

\square | $\mathbf{0}$ | 3 |
| :--- | :--- |

x_{i}	0.5	3.5
x_{2}	0.5833	3.4162
x_{3}	0.5858	3.4142
x_{4}	0.5858	3.4142
x_{5}		

