Choose

 $x_1 = 1$

 $F(x_1) = -1 - ve$

$x^2 = \frac{1}{2} (x_0 +$	x_1 = $\frac{1}{2}(0+1)$ =	= 0.5	
F(0.5)	= -0.25 is $-ve$		
We neglect x	$_1$ and we have		
X3 =	$\frac{1}{2}(x_0 + x_2) = \frac{1}{2}$	(0+0.5)=0.25	
F(0.2	5) = 0.3125 - ve		
We neglect x	and we have		
$x_4 = \frac{1}{2}$	$\frac{1}{2}(x_2 + x_3) = \frac{1}{2}(x_2 + x_3)$	(0.5 + 0.25) = 0.3	75
F (0.3	(75) is +ve	···· · · · · · · · · · · · · · · · · ·	
We reject x_3	and we have		
$x_5 \equiv \frac{1}{2}$	$\frac{1}{2}(x_2 + x_4) = \frac{1}{2}(0$	(0.5 + 0.375) = 0.4	4375
F(0.4)	375) is -ve		
We reject x_2	and have		
$x_{\epsilon} \equiv \frac{1}{2}$	$\frac{1}{2}(x_4 + x_5) = \frac{1}{2}(1)$	0.375 ± 0.4375	
$F(x_0) = +1$	$2(M_{1} + M_{3}) = 72(N_{1}$	0.575 + 0.1575)	
$F(x_1) = -1$			
$\mathbf{X}_0 = 9_n$	$\mathbf{x}_1 = \mathbf{b}_n$	$\frac{1}{2}(x_0 + x_1)$	F (c _n)
0	1	0.5	-0.25 –ve
0	0.5	0.25	0.3125 +ve
0.5	0.25	0.375	0.0156 +ve
0.5	0.375	0.4375	-0.12109 -ve
0.375	0.4375	0.40625	

This is linear function x(y) with $x(y_0) = x_0$ and $x(y_1) = x_1$

The line intersects the x – axis at the point obtained by putting y = 0 in (3.4)

 \mathbf{X}_1

$$x_{2} \quad \frac{-y_{1}}{y_{0} - y_{1}} \quad x_{0} \quad + \frac{-y_{0}}{y_{1} - y_{0}}$$
$$= \frac{x_{0}y_{1} - x_{1}y_{0}}{y_{1} - y_{0}}$$
may be re-written on a linear int

terpolation form as
$$x_0 \frac{F(x_1) - x_1 F(x_0)}{F(x_1) - F(x_0)} \dots 3.5$$

This can also be written as

This

 $\begin{array}{c} X_2 = x_1 - (x_1 - x_0) \ F(x_1) \\ \hline F(x_i) - F(x_0) \end{array} \quad \dots \ 3.5 \end{array}$

It may be repeated such that an iterative scheme results. As in the case of binary search (bisection rule) the two estimates slid give opposite signs in F(x).

The convergence in this method is faster than that in bisection rule.

Example $F(x) = x^2 - 3x + 1 = 0$ Choose $x_0 = 0$ $x_1 = 1$

 $x_{1} = 1$ Since F(x₀) is +ve = 1 and F (x₁) is -ve = -1 $x_{2} = x_{0} F(x_{1}) - x_{1} F(x_{0})$ $F(x_{1}) - F(x_{0})$ $x_{2} = \frac{0 - 1}{-1 - 1} = \frac{1}{2} = 0.5$ F(x₂) = F(0.5) = (0.5)² - 3(0.5) + 1 = 0.25 - 1.5 + 1 = -0.25 + ve So, we reject x₁ $x_{3} = x_{0} F(x_{2}) - x_{2} F(x_{0})$ $F(x_{2}) - F(x_{0})$ $x_{3} = 0 - 0.5 x 1$ $= \frac{0.5}{-0.25 - 1} = 0.4$ F(x₃) = F(0.4) = 0.4² - 3(0.4) + 1 = -0.04 -ve So, we reject x₂

$$\begin{aligned} x_4 &= x_0 \ F(x_3) - x_3 \ F(x_0) \\ \hline F(x_3) - F(x_0) \\ \hline x_3 &= \frac{-0.4}{-0.04 - 1} = \frac{0.4}{1.04} = 0.3846 \\ F(x_4) &= (0.3846)^2 - 3(.3846) + 1 = -0.154 \end{aligned}$$

And so on, we continue until convergence is achieved.

Assignment

Write a FROTRAN to illustrate the use of regula falsi to solve $x^2 - 5x + 1 = 0$.

4.0 ITERATIVE METHODS WITH DERIVATIVES

4.1 Order of Convergence:

Let α be a root of $F(\alpha) = 0$

$$\alpha = F(\alpha)$$

suppose the estimate α has error Σ_n

Comments:

- 1. Convergence is first order if $f(\alpha) \neq 0$, $f'\alpha =, ..., = 0$
- 2. Convergence is second order if

$$f(\alpha) = 0$$
 and $f'(\alpha)$

3. Convergence is third order if $f(\alpha) = 0$ and $f'(\alpha)$

$$f'''(\alpha) \neq 0$$

4.2 Newton-Raphson Method

From the figure, a is the point at which f(x) = 0 and x_0 is an estimate of a. the Newton Raphson method computes a new estimate, x_1 in the following way:

This is the second order convergence. Let x be a root of equation (3.1) - F(x) = 0If x_n is the nth estimate with error \sum_n , then $x = x_n + \sum_n \dots 4.1$ $F(x) = F(x_n + \sum_n) = 0$ $= F(x_n) + n F'(x_n) + \sum_n^2 F''(x_n) + \dots + = 0$ $\Omega F(x_n) + \sum_n F'(x_n) = 0p$ $= \sum_n = -F(x_n)$ $-F'(x_n)$ The iteration scheme in 4.1 becomes $x_n + 1 = x_n - F(x_n)$ $-F'(x_n)$ - N - R method.

For example

 $F(x) = x^{2} - 4x + 2 = 0$ F'(x) = 2x - 4Therefore $x_{n+1} = x_{n} - (xn^{2} - 4x_{n} + 2)$ $\underline{-2x_{n} - 4}$ Using our former initial estimate $X_{0} \qquad 0 \qquad 3$

Xi	0.5	3.5
X ₂	0.5833	3.4162
X3	0.5858	3.4142
X4	0.5858	3.4142
X5		