
Answer 

11001000110001011101001111010111 

 

 

 

 

 

CHAPTER FOUR 

4.0 MODES OF DATA REPRESENTATION 

Most data structures are abstract structures and are implemented by the programmer with a series 

of assembly language instructions. Many cardinal data types (bits, bit strings, bit slices, binary 

integers, binary floating point numbers, binary encoded decimals, binary addresses, characters, 

etc.) are implemented directly in hardware for at least parts of the instruction set. Some 

processors also implement some data structures in hardware for some instructions — for 

example, most processors have a few instructions for directly manipulating character strings. 

An assembly language programmer has to know how the hardware implements these cardinal 

data types. Some examples: Two basic issues are bit ordering (big endian or little endian) and 

number of bits (or bytes). The assembly language programmer must also pay attention to word 

length and optimum (or required) addressing boundaries. Composite data types will also include 

details of hardware implementation, such as how many bits of mantissa, characteristic, and sign, 

as well as their order. 

4.1  INTEGER REPRESENTATION 

Sign-magnitude is the simplest method for representing signed binary numbers. One bit (by 

universal convention, the highest order or leftmost bit) is the sign bit, indicating positive or 



negative, and the remaining bits are the absolute value of the binary integer. Sign-magnitude is 

simple for representing binary numbers, but has the drawbacks of two different zeros and much 

more complicates (and therefore, slower) hardware for performing addition, subtraction, and any 

binary integer operations other than complement (which only requires a sign bit change). 

In sign magnitude, the sign bit for positive is represented by 0 and the sign bit for negative is 

represented by 1. 

 

 

Examples:  

1. Convert +52 to binary using an 8 bits machine 

Answer: The binary equivalence of 52 is 110100 but 0 is used to represent positive magnitude, 

hence 0 is added to the front of this binary equivalence. This makes a total of 7bits, since we are 

working on an eight bit machine, we have to pad the numbers with 0 so as to make it a total of 

8bits. Thus the binary equivalence 0f 52 is 00110100. 

2. Convert -52 to binary using an 8 bits machine 

Answer: The binary equivalence of 52 is 110100 but 1 is used to represent positive magnitude, 

hence 1 is added to the front of this binary equivalence. This makes a total of 7bits, since we are 

working on an eight bit machine, we have to pad the numbers with 0 so as to make it a total of 

8bits. In this case, the sign bit has to come first and the padded 0 follows. Thus the binary 

equivalence 0f -52 is 10110100. 

Exercise: 

a. Convert +47 to binary on an 8 bits machine 

b. Convert -17 to binary on an 8 bits machine 

c. Convert -567 on a 16 bits machine 



    In one’s complement representation, positive numbers are represented in the “normal” 

manner (same as unsigned integers with a zero sign bit), while negative numbers are represented 

by complementing all of the bits of the absolute value of the number. Numbers are negated by 

complementing all bits. Addition of two integers is peformed by treating the numbers as 

unsigned integers (ignoring sign bit), with a carry out of the leftmost bit position being added to 

the least significant bit (technically, the carry bit is always added to the least significant bit, but 

when it is zero, the add has no effect). The ripple effect of adding the carry bit can almost double 

the time to do an addition. And there are still two zeros, a positive zero (all zero bits) and a 

negative zero (all one bits). 

The I’s complement form of any binary number is simply by changing each 0 in the number to a 

1 and vice versa. 

Examples 

1. Find the 1’s complement of -7 

Answer: -7 in the actual representation without considering the machine bit is 1111. To change 

this to 1’s complement, the sign bit has to be retained and other bits have to be inverted. Thus, 

the answer is: 1000. 1 denotes the sign bit. 

2. Find the1’s complement of -7.25 

The actual magnitude representation  of -7.25  is 1111.01 but retaining the sign bits and inverting 

the other bits gives: 1000.10 

Exercises 

1. Find the one’s complement of -47 

2. Find the one’s complement of -467 and convert the answer to hexcadecimal. 

    In two’s complement representation, positive numbers are represented in the “normal” 

manner (same as unsigned integers with a zero sign bit), while negative numbers are represented 

by complementing all of the bits of the absolute value of the number and adding one. Negation of 



a negative number in two’s complement representation is accomplished by complementing all of 

the bits and adding one. Addition is performed by adding the two numbers as unsigned integers 

and ignoring the carry. Two’s complement has the further advantage that there is only one zero 

(all zero bits). Two’s complement representation does result in one more negative number (all 

one bits) than positive numbers. 

    Two’s complement is used in just about every binary computer ever made. Most processors 

have one more negative number than positive numbers. Some processors use the “extra” neagtive 

number (all one bits) as a special indicator, depicting invalid results, not a number (NaN), or 

other special codes. 

2’s complement is used to represent negative numbers because it allows us to perform the 

operation of subtraction by actually performing addition. The 2’s complement of a binary 

number is the addition of 1 to the rightmost bit of its 1’s complement equivalence. 

Examples 

1. Convert -52 to its 2’s complement 

The 1’s complement of -52 is 11001011 

To convert this to 2’s complement we have 

11001011 

+            1 

11001100 

2. Convert -419 to 2’s complement and hence convert the result to hexadecimal 

The sign magnitude representation of -419 on a 16 bit machine is 1000000110100011 

 The I’s complement is 1111111001011100 

To convert this to 2’s complement, we have: 

1111111001011100 



+                            1 

1111111001011101 

Dividing the resulting bits into four gives an hexadecimal equivalence of FE5D16   

In general, if a number a1, a2……..an is in base b, then we by an form its b’s complement by 
subtracting each digit of the number  from b-1 and adding 1 to the result. 

Example: Find the 8’s complement of 72458 

 

 

Answer: 

 7777 

-7245 

0532 

+    1 

0533 

Thus the 8’s complement of 72458 is 0533 

ADDITION OF NUMBERS USING 2’S COMPLEMENT 

1. Add +9 and  +4 for 5 bits machine 

=   01001 

     00100 

     01101 

01101 is equivalent to +13 

2. Add +9 and -4 on a 5 bits machine 

+9 in its sign magnitude form is 01001 



-4 in the sign magnitude form is10100 

Its 1’s complement equivalence is 11011 

Its 2’s complement equivalence is 11100 (by adding 1 to its 1’s complement) 

Thus addition +9 and -4 which is also +9 + (-4) 

This gives 

    01001 

+  11100 

  100101 

Since we are working on a 5bits machine, the last leftmost bit is an off-bit, thus it is neglected. 
The resulting answer is thus 00101. This is equivalent to +5 

3. Add -9 and +4 

The 2’s complement of -9 is 10111 

The sign magnitude of +4 is 00100 

This gives; 

    10111 

+  00100 

    11011 

The sum has a sign bit of 1 indicating a negative number, since the sum is negative, it is in its 2’s 
complement, thus the last 4 bits 1.e 1011 actually represent the 2’s complement of the sum. To 
find the true magnitude of the sum, we 2’s complement the sum 

11011 to 1’s complement is 10100 

               2’s complement is          1 

            10101 

This is equivalent to -5 

Exercise:  



1. Using the last example’s concept add -9 and -4.  

The expected answer is 11101 

2. Add -9 and +9 

The expected answer is 100000, the last leftmost bit is an off bit thus, it is truncated. 

    In unsigned representation, only positive numbers are represented. Instead of the high order 

bit being interpreted as the sign of the integer, the high order bit is part of the number. An 

unsigned number has one power of two greater range than a signed number (any representation) 

of the same number of bits. A comparison of the integer arithmetic forms is shown below; 

bit pattern sign-mag. one’s comp. two’s comp unsigned 

000 0 0 0 0 

001 1 1 1 1 

010 2 2 2 2 

011 3 3 3 3 

100 -0 -3 -4 4 

101 -1 -2 -3 5 

110 -2 -1 -2 6 

111 -3 -0 -1 7 

 

4.2  FLOATING POINT REPRESENTATIONS 

    Floating point numbers are the computer equivalent of “scientific notation” or “engineering 

notation”. A floating point number consists of a fraction (binary or decimal) and an exponent 

(bianry or decimal). Both the fraction and the exponent each have a sign (positive or negative). 

    In the past, processors tended to have proprietary floating point formats, although with the 

development of an IEEE standard, most modern processors use the same format. Floating point 

numbers are almost always binary representations, although a few early processors had (binary 

coded) decimal representations. Many processors (especially early mainframes and early 



microprocessors) did not have any hardware support for floating point numbers. Even when 

commonly available, it was often in an optional processing unit (such as in the IBM 360/370 

series) or coprocessor (such as in the Motorola 680x0 and pre-Pentium Intel 80x86 series). 

    Hardware floating point support usually consists of two sizes, called single precision (for the 

smaller) and double precision (for the larger). Usually the double precision format had twice as 

many bits as the single precision format (hence, the names single and double). Double precision 

floating point format offers greater range and precision, while single precision floating point 

format offers better space compaction and faster processing. 

    F_floating format (single precision floating), DEC VAX, 32 bits, the first bit (high order bit in 

a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive or zero), 

followed by 15 bits of an excess 128 binary exponent, followed by a normalized 24-bit fraction 

with the redundant most significant fraction bit not represented. Zero is represented by all bits 

being zero (allowing the use of a longword CLR to set a F_floating number to zero). Exponent 

values of 1 through 255 indicate true binary exponents of -127 through 127. An exponent value 

of zero together with a sign of zero indicate a zero value. An exponent value of zero together 

with a sign bit of one is taken as reserved (which produces a reserved operand fault if used as an 

operand for a floating point instruction). The magnitude is an approximate range of .29*10-38 

through 1.7*1038. The precision of an F_floating datum is approximately one part in 223, or 

approximately seven (7) decimal digits). 

    32 bit floating format (single precision floating), AT&T DSP32C, 32 bits, the first bit (high 

order bit in a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive 

or zero), followed by 23 bits of a normalized two’s complement fractional part of the mantissa, 

followed by an eight bit exponent. The magnitude of the mantissa is always normalized to lie 

between 1 and 2. The floating point value with exponent equal to zero is reserved to represent the 

number zero (the sign and mantissa bits must also be zero; a zero exponent with a nonzero sign 

and/or mantissa is called a “dirty zero” and is never generated by hardware; if a dirty zero is an 

operand, it is treated as a zero). The range of nonzero positive floating point numbers is N = [1 * 

2-127, [2-2-23] * 2127] inclusive. The range of nonzero negative floating point numbers is N = [-[1 

+ 2-23] * 2-127, -2 * 2127] inclusive. 



    40 bit floating format (extended single precision floating), AT&T DSP32C, 40 bits, the first 

bit (high order bit in a register, first bit in memory) is the sign magnitude bit (one=negative, 

zero=positive or zero), followed by 31 bits of a normalized two’s complement fractional part of 

the mantissa, followed by an eight bit exponent. This is an internal format used by the floating 

point adder, accumulators, and certain DAU units. This format includes an additional eight guard 

bits to increase accuracy of intermediate results. 

    D_floating format (double precision floating), DEC VAX, 64 bits, the first bit (high order bit 

in a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive or zero), 

followed by 15 bits of an excess 128 binary exponent, followed by a normalized 48-bit fraction 

with the redundant most significant fraction bit not represented. Zero is represented by all bits 

being zero (allowing the use of a quadword CLR to set a D_floating number to zero). Exponent 

values of 1 through 255 indicate true binary exponents of -127 through 127. An exponent value 

of zero together with a sign of zero indicate a zero value. An exponent value of zero together 

with a sign bit of one is taken as reserved (which produces a reserved operand fault if used as an 

operand for a floating point instruction). The magnitude is an approximate range of .29*10-38 

through 1.7*1038. The precision of an D_floating datum is approximately one part in 255, or 

approximately 16 decimal digits). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER FIVE 

COMPUTER INSTRUCTION SET 

5.0 An instruction set is a list of all the instructions, and all their variations, that a processor 

(or in the case of a virtual machine, an interpreter) can execute. 

 Arithmetic such as add and subtract  

 Logic instructions such as and, or, and not  

 Data instructions such as move, input, output, load, and store  

 Control flow instructions such as goto, if ... goto, call, and return.  

An instruction set, or instruction set architecture (ISA), is the part of the computer architecture related 
to programming, including the native data types, instructions, registers, 


