

Course Code: CSC 313

Course Title: Data Structure and Algorithms

Course Unit: 3

Course Developer/Writer: A. J. Ikuomola
 &
 Dr. A.T. Akinwale

Department of Computer Science
College of Natural Science
University of Agriculture Abeokuta,
Ogun State, Nigeria

UNIT 1: MATHEMATICAL NOTATION AND FUNCTION

Summation Symbol (Sum)

∑ Called Summation (Sigma)

Consider a sequence of a1, a2, a3,… Then the sums

a1 + a2 + a3 + ... + an and am1 + am+1 + … + an

will be denoted respectively by

n

j
ja

1

 and

n

mj
ja

Example:

(1) n

n

i
i aaaaaa

...4321
1

(2) nn

n

i
ii babababababa

...44332211
1

(3) 542516945432 2222
5

2

2
j

j

(4) nj
n

j

...4321
1

PIE (Product)

ni

n

i
xxxxx 3211

Floor Function

Let x be any real number, then x lies between two integers called the floor and the ceiling of x.

Specifically,

 x , called the floor of x denotes greatest integer that does not exceed x.

Examples:

(1) 14.3 = 3

(2) 5 = 2.23 = 2

(3) 5.8 = -9

(4) 7 = 7

Ceiling Function

The symbol for ceiling function is called the ceiling function of x denotes the least integer

that is not less than x.

Example:

(1) 3.14 = 4

(2) 5 = 2.23 = 3

(3) 8.5- = - 8

(4) 7 = 7

Remainder Function: Modular Arithmetic

Let K be any integer and let M be a positive integer. Then

k (mod M)

(read k modulo M) will denote the integer remainder when k is divided by M. More exactly

k (mod M) is the unique integer r such that

k = Mq + r when 0 < r < M

When k is positive, simply divide k by M to obtain the remainder r.

Example:

(1) 25(mod7)

25/7 = 3 r 4

25(mod7) = 4

(2) 25(mod5)

25/5 = 5 r 0

25(mod5) = 0

(3) 35(mod11)

35/11 = 3 r 2

35(mod11) = 2

(4) 3(mod8)

3/8 = 3 r 4

3(mod8) = 3 (note that 3 = 8 . 0 + 3 = 3) when q= 0

UNIT 2: DATA STRUCTURE

Introduction

Data structure is a particular way of storing and organizing data in a computer so that it can be

used efficiently. Data structure is the logical arrangement of data element with the set of

operation that is needed to access the element. The logical model or mathematical model of the

particular organization of data is called a data structure. It is defined as a set of rules and

constraint which shows the relationship that exist between individual pieces of data which may

occur.

Basic Principle

Data structures are generally based on the ability of a computer to fetch and store data at any

place in its memory, specified by an address – a bit string that can be stored in memory and

manipulated by the program. Thus the record and array data structures are based on computing

the addresses of data items with arithmetic operations; while the linked data structures are based

on storing addresses of data items within the structure itself. Many data structures use both

principles.

The choice of a data structure for a particular problem depends on the following factors:

1) Volume of data involved

2) Frequency and ways in which data will be used.

3) Dynamic and static nature of the data.

4) Amount of storage required by the data structure.

5) Time to retrieve an element.

6) Ease of programming.

Classification of Data Structure

(1) Primitive and non – primitive: primitive data structures are basic data structure and are

directly operated upon machine instructions. Examples are integer and character. Non-primitive

data structures are derived data structure from the primitive data structures. Examples are

structure, union and array.

(2) Homogenous and Heterogeneous: In homogenous data structures all the elements will be

of the same type. Example is array. In heterogeneous data structure the elements are of different

types. Example: structure

(3) Static and Dynamic data structure: In some data structures memory is allocated at the

time of compilation such data structures are known as static data structures. If the allocation of

memory is at run-time then such data structures are known as Dynamic data structures. Functions

such as malloc, calloc, etc. are used for run-time memory allocation.

(4) Linear and Non – linear data structure: Linear data structure maintains a linear

relationship between its elements. A data structure is said to be linear if its elements form a

sequence or a linear list. Example, array. A non-linear data structure does not maintain any linear

relationship between the elements. Example: tree.

Linear structure can be represented in a memory in 2 basic ways:

i) To have the linear relationship between the element represented by mean of sequential

memory location. These linear structures are called ARRAY.

ii) To have the linear relationship between the elements represented by means of points or links.

These linear structures are called LINKLIST.

Data Structure Operation

The following operations are normally performs on any linear structure, whether is an array or a

linked list.

 Transversal (Traversing)

 Search (Searching)

 Inserting

 Deleting

 Sorting

 Merging

Transversal/Transversing: accessing each element or record in the list exactly only, so that

certain items in the record may be processed. This accessing and processing is sometimes called

“visiting” the record.

Search (Searching): finding the location of the record with a given key value or finding the

location of all records which satisfy one or more conditions.

Inserting: adding a new record to the structure

Deleting: removing an element from the list of records from the structure.

Sorting: arranging the record in some logical order (e.g. alphabetically according to some

NAME key or in numerical order according to some NUMBER key such as social security

number, account number, matric number, etc.)

Merging: combining the records in two different sorted file into a single sorted file.

Characteristics of Data Structures

Data Structure Advantages Disadvantages

Array Quick inserts
Fast access if index know

Slow search
Slow deletes
Fixed size

Ordered Array Faster search than unsorted array Slow inserts
Slow deletes
Fixed size

Stack Last-in, first-out access Slow access to other items

Queue First-in, first-out access Slow access to other items

Linked List Quick inserts
Quick deletes

Slow search

Binary Tree Quick search
Quick inserts
Quick deletes
(if the tree remains balanced)

Deletion algorithm is complex

Red-Black Tree Quick search
Quick inserts
Quick deletes
(Tree always remains balanced)

Complex to implement

2-3-4 Tree Quick search
Quick inserts
Quick deletes
(Tree always remains balanced)
(Similar trees good for disk storage)

Complex to implement

Hash Table Very fast access if key is known
Quick inserts

Slow deletes
Access slow if key is not known
Inefficient memory usage

Heap Quick inserts
Quick deletes
Access to largest item

Slow access to other items

Graph Best models real-world situations Some algorithms are slow and very
complex

