
1
OPERATING SYSTEM II

DISTRIBUTED OPERATING SYSTEM

INTRODUCTION

An operating system is a program that controls the resources of a computer and
provides its user with an interface or a virtual machine that’s more convenient to
use than bear machine.

To begin with, we use the term distributed system to mean a distributed operating
system as opposed to a database system or some distributed application system
such as a banking system, another name for a distributed operating system is DIS-
CENTRALIZED OPERATING SYSTEM.
Example of a centralized (not distributed) operating system are; MS-DOS, UNIX,
and CP/M.

A distributed operating system is the one that look to its user like an ordinary
centralized operating system but runs on multiple, independent, central processing
unit (CPU). The key concept in distributed operating system is the
TRANPARENCY. What determine a distributed operating system are the software
and not the hardware.

In distributed system, the error can be made to tolerate both hardware and software
error but it is the software error and not the hardware that cleans the error when it
occurs.

Network OS is used to manage Networked computer systems and create, maintain
and transfer files in that Network.
Distributed OS is also similar to Networked OS but in addition to it the platform on
which it is running should have high configuration such as more capacity RAM,
High speed Processor. The main difference between the DOS and the NOS is the
transparent issue: Transparency:

- How aware are users of the fact that multiple computers are
being used?

Types of Distributed Operating Systems

- Network Operating Systems
- Distributed Operating Systems

2
OPERATING SYSTEM II

Network-Operating Systems

- Users are aware where resources are located
- Network OS is built on top of centralized OS.
- Handles interfacing and coordination between local OSs.
- Users are aware of multiplicity of machines.

Distributed-Operating Systems

 Designed to control and optimize operations and resources in
distributed system.
- Users are not aware of multiplicity of machines
- Access to remote resources similar to access to local resources
- Data Migration – transfer data by transferring entire file, or
transferring only those portions of the file necessary for the immediate
task
 - Computation Migration – transfer the computation, rather than the
data, across the system

- Computation speedup – sub processes can run concurrently on different
sites
- Process Migration – execute an entire process, or parts of it, at
different sites
- Load balancing – distribute processes across network to even the
workload
- Hardware preference – process execution may require specialized
processor
- Software preference – required software may be available at only a
particular site
- Data access – run process remotely, rather than transfer all data
locally

EXAMPLES OF DISTRIBUTED OPERATING SYSTEM

 The Cambridge Distributed Computing System

3
OPERATING SYSTEM II

 Amoeba
 The V Kernel
 The Eden Project

There are so many types of distributed operating system but these are chosen based
on three criteria which are:

First, we only chose systems that were designed from scratch as-distributed
systems (systems that gradually evolved by connecting together existing
centralized systems or are multiprocessor versions of UNIX were excluded).

Second, we only chose systems that have actually been implemented; paper
designs did not count.

Third, we only chose systems about which a reasonable amount of information was
available.

NOTE: if a user can tell which computer he/she is using, then he/she is not using a
distributed system. The user of a true distributed operating system should not know
(or care) on which machine (or machines) their programs are running, where their
files are stored and so on.

4
OPERATING SYSTEM II

TRANSPARENCY

• Goal motivated by the desire to hide all irrelevant system-dependent details from
the user, whenever possible.

• It is more important in distributed systems due to higher implementation
complexities.

• Shielding the system-dependent information from the users is a trade-off
between simplicity and effectiveness.

• Access transparency - Local and remote system entities must remain
indistinguishable when viewed through the user interface. The distributed
operating system maintains this perception through the exposure of a single access
mechanism for a system entity, regardless of that entity being local or remote to the

5
OPERATING SYSTEM II

user. Transparency dictates that any differences in methods of accessing any
particular system entity—either local or remote—must be both invisible to, and
undetectable by the user.

• Location transparency - Location transparency comprises two distinct sub-
aspects of transparency, Naming transparency and User mobility. Naming
transparency requires that nothing in the physical or logical references to any
system entity should expose any indication of the entities location, or its local or
remote relationship to the user. User mobility requires the consistent referencing of
system entities, regardless of the system location from which the reference
originates. Transparency dictates that the relative location of a system entity—
either local or remote—must be both invisible to, and undetectable by the user.

• Migration transparency - Logical resources and physical processes migrated by
the system, from one location to another in an attempt to maximize efficiency,
reliability, availability, security, or whatever reason, should do so automatically
controlled solely by the system. There are a myriad of possible reasons for
migration; in any such event, the entire process of migration before, during, and
after should occur without user knowledge or interaction. Transparency dictates
that both the need for, and the execution of any system entity migration must be
both invisible to, and undetectable by the user.

• Concurrency transparency - The distributed operating system allows for
simultaneous use of system resources by multiple users and processes, which are
kept completely unaware of the concurrent usage. Transparency dictates that both
the necessity for concurrency and the multiplexed usage of system resources must
be both invisible to, and undetectable by the user.

• Replication transparency - A system's elements or components may need to be
copied to strategic remote points in the system in an effort to possibly increase
efficiencies through better proximity, or provide for improved reliability through
the duplication of a back-up. This duplication of a system entity and its subsequent
movement to a remote system location may occur for any number of possible
reasons; in any event, the entire process before, during, and after should occur
without user knowledge or interaction. Transparency dictates that the necessity and
execution of replication, as well as the existence of replicated entities throughout
the system must be both invisible to, and undetectable by the user.

6
OPERATING SYSTEM II

• Parallelism transparency - Arguably the most difficult aspect of transparency,
and described by Tanenbaum as the "Holy grail" for distributed system designers.
A system's parallel execution of a task among various processes throughout the
system should occur without any required user knowledge or interaction.
Transparency dictates that both the need for, and the execution of parallel
processing must be both invisible to, and undetectable by the user.

• Failure transparency - In the event of a partial system failure, the system is
responsible for the automatic, rapid, and accurate detection and orchestration of a
remedy. These measures should exhibit minimal user imposition, and should
initiate and execute without user knowledge or interaction. Transparency dictates
that users and processes be exposed to absolute minimal imposition as a result of
partial system failure; and any system-employed techniques of detection and
recovery must be both invisible to, and undetectable by the user.

• Performance transparency - In any event where parts of the system experience
significant delay or load imbalance, the system is responsible for the automatic,
rapid, and accurate detection and orchestration of a remedy. These measures
should exhibit minimal user imposition, and should initiate and execute without
user knowledge or interaction. While reasonable and predictable performances are
important goals in these situations, there should be no expressed or implied
concepts of fairness or equality among affected users or processes. Transparency
dictates that users and processes be exposed to absolute minimal imposition as a
result of performance delay or load imbalance; and any system-employed
techniques of detection and recovery must be both invisible to, and undetectable by
the user.

• Size transparency - A system's geographic reach, number of nodes, level of
node capability, or any changes therein should exists without any required user
knowledge or interaction. Transparency dictates that system and node composition,
quality, or changes to either must be both invisible to, and undetectable by the user.

• Revision transparency - System occasionally have need for system-software
version changes and changes to internal implementation of system infrastructure.
While a user may ultimately become aware of, or discover the availability of new
system functions or services, their implementation should in no way be the prompt
for this discovery. Transparency dictates that the implementation of system-
software version changes and changes to internal system infrastructure must be

7
OPERATING SYSTEM II

both invisible to, and undetectable by the user; except as revealed by
administrators of the system.

SCHEDULLING TECHNIQUES
The hierarchical model provides a general model for resource control but does not
provide any specific guidance on how to do scheduling. If each process uses an
entire processor (i.e., no multiprogramming), and each process is independent of
all the others, any process can be assigned to any processor at random. However, if
it is common that several processes are working together and must communicate
frequently with each other, as in UNIX pipelines or in cascaded (nested) remote
procedure calls, then it is desirable to make sure that the whole group runs at once.
Let us assume that each processor can handle up to N processes. If there are plenty
of machines and N is reasonably large, the problem is not finding a free machine
(i.e., a free slot in some process table), but something more subtle. The basic
difficulty can be illustrated by an example in which processes A and B run on one
machine and processes C and D run on another. Each machine is time shared in,
say, 100-millisecond time slices, with A and C running in the even slices, and B
and D running in the odd ones. Suppose that A sends many messages or makes
many remote procedure calls to D. During time slice 0, A starts up and
immediately calls D, which unfortunately is not running because it is now C’s turn.
After 100 milliseconds, process switching takes place, and D gets A’s message,
carries out the work, and quickly replies. Because B is now running, it will be
another 100 milliseconds before A gets the reply and can proceed. The net result is
one message exchange every 200 milliseconds. What is needed is a way to ensure
that processes that communicate frequently run simultaneously. Although it is
difficult to determine dynamically the inter-process communication patterns, in
many cases a group of related processes will be started off together.

PROCESS MANAGEMENT

Process management provides policies and mechanisms for effective and efficient
sharing of a system's distributed processing resources between that system's
distributed processes. These policies and mechanisms support operations involving
the allocation and de-allocation of processes and ports to processors, as well as
provisions to run, suspend, migrate, halt, or resume execution of processes. While
these distributed operating system resources and the operations on them can be
either local or remote with respect to each other, the distributed operating system

8
OPERATING SYSTEM II

must still maintain complete state of and synchronization over all processes in the
system; and do so in a manner completely consistent from the user's unified system
perspective.

As an example, load balancing is a common process management function. One
consideration of load balancing is which process should be moved. The kernel may
have several mechanisms, one of which might be priority-based choice. This
mechanism in the kernel defines what can be done; in this case, choose a process
based on some priority. The system management components would have policies
implementing the decision making for this context. One of these policies would
define what priority means, and how it is to be used to choose a process in this
instance.

RESOURCES MANAGEMENT

Resource management in a distributed system differs from that in a centralized
system in a fundamental way. Centralized systems always have tables that give
complete and up-to-date status information about all the resources being managed;
distributed systems do not. For example, the process manager in a traditional
centralized operating system normally uses a “process table” with one entry per
potential process. When a new process has to be started, it is simple enough to scan
the whole table to see whether a slot is free. A distributed operating system, on the
other hand, has a much harder job of finding out whether a processor is free,
especially if the system designers have rejected the idea of having any central
tables at all, for reasons of reliability. Furthermore, even if there is a central table,
recent events on outlying processors may have made some table entries obsolete
without the table manager knowing it. The problem of managing resources without
having accurate global state information is very difficult.

PROCESSOR ALLOCATION

One of the key resources to be managed in a distributed system is the set of
available processors. One approach that has been proposed for keeping tabs on a
collection of processors is to organize them in a logical hierarchy independent of
the physical structure of the network, as in MICROS. This approach organizes the
machines like people in corporate, military, academic, and other real-world
hierarchies. Some of the machines are workers and others are managers. For each
group of k workers, one manager machine (the “department head”) is assigned the
task of keeping track of who is busy and who is idle. If the system is large, there
will be an unwieldy number of department heads; so some machines will function

9
OPERATING SYSTEM II

as “deans,” riding herd on k department heads. If there are many deans, they too
can be organized hierarchically, with a “big cheese” keeping tabs on k deans. This
hierarchy can be extended ad infinitum, with the number of levels needed growing
logarithmically with the number of workers. Since each processor need only
maintain communication with one superior and k subordinates, the information
stream is manageable. An obvious question is, “What happens when a department
head, or worse yet, a big cheese, stops functioning (crashes)?” One answer is to
promote one of the direct subordinates of the faulty manager to fill in for the boss.
The choice of which one can either be made by the subordinates themselves, by the
deceased’s peers, or in a more autocratic system, by the sick manager’s boss. To
avoid having a single (vulnerable) manager at the top of the tree, one can truncate
the tree at the top and have a committee as the ultimate authority. When a member
of the ruling committee malfunctions, the remaining members promote someone
one level down as a replacement. Although this scheme is not completely
distributed, it is feasible and works well in practice. In particular, the system is self
repairing, and can survive occasional crashes of both workers and managers
without any long-term effects. In MICROS, the processors are monoprogrammed,
so if a job requiring S processes suddenly appears, the system must allocate S
processors for it. Jobs can be created at any level of the hierarchy. The strategy
used is for each manager to keep track of approximately how many workers below
it are available (possibly several levels below it). If it thinks that a sufficient
number are available, it reserves some number R of them, where R 2 S, because
the estimate of available workers may not be exact and some machines may be
down. If the manager receiving the request thinks that it has too few processors
available, it passes the request upward in the tree to its boss. If the boss cannot
handle it either, the request continues propagating upward until it reaches a level
that has enough available workers at its disposal. At that point, the manager splits
the request into parts and parcels them out among the managers below it, which
then do the same thing until the wave of scheduling requests hits bottom. At the
bottom level, the processors are marked as “busy,” and the actual number of
processors allocated is reported back up the tree. To make this strategy work well,
R must be large enough so that the probability is high that enough workers will be
found to handle the whole job. Otherwise, the request will have to move up one
level in the tree and start all over, wasting considerable time and computing power.
On the other hand, if R is too large, too many processors will be allocated, wasting
computing capacity until word gets back to the top and they can be released. The
whole situation is greatly complicated by the fact that requests for processors can
be generated randomly anywhere in the system, so at any instant, multiple requests
are likely to be in various stages of the allocation algorithm, potentially giving rise

10
OPERATING SYSTEM II

to out-of-date estimates of available workers, race conditions, deadlocks, and
more.

Failure Recovery
 Failure Detection
Detecting hardware failure is difficult. To detect a link failure, a handshaking
protocol can be used. Assume Site A and Site B has established a link. At fixed
intervals, each site will exchange an I-am-up message indicating that they are up
and running. If Site A does not receive a message within the fixed interval, it
assumes either (a) the other site is not up or (b) the message was lost. Then, Site A
can now send an “Are-you-up?” message to Site B. If Site A does not receive a
reply, it can repeat the message or try an alternate route to Site B.
 If Site A does not ultimately receive a reply from Site B, it concludes some type of
failure has occurred in site B. Such failure could be that:
Types of failures:
- Site B is down
- The direct link between A and B is down
- The alternate link from A to B is down
- The message has been lost.
 However, Site A cannot determine exactly why the failure has occurred

Reconfiguration

 When Site A determines a failure has occurred, it must reconfigure the system:
1. If the link from A to B has failed, this must be broadcast to every site in the
system
2. If a site has failed, every other site must also be notified indicating that the
services offered by the failed site are no longer available.
 When the link or the site becomes available again, this information must again be
broadcast to all other sites.

Distributed Deadlock Detection

There are two kinds of potential deadlocks which are:

11
OPERATING SYSTEM II

- resource deadlocks
- communication deadlocks

Resource deadlocks are traditional deadlocks, in which all of some set of processes
are blocked waiting for resources held by other blocked processes. For example, if
A holds X and B holds Y, and A wants Y and B wants X, a deadlock will result. In
principle, this problem is the same in
Centralized and distributed systems, but it is harder to detect in the latter because
there are no centralized tables.
 The other kind of deadlock that can occur in a distributed system is a
communication deadlock. Suppose A is waiting for a message from B and B is
waiting for C and C is waiting for A. Then we have a deadlock. Chandy et al.
[1983] present an algorithm for detecting (but not preventing) communication
deadlocks. Very crudely summarized, they assume that each process that is
blocked waiting for a message knows which process or processes might send the
message. When a process logically blocks, they assume that it does not really block
but instead sends a query message to each of the processes that might send it a real
(data) message. If one of these processes is blocked, it sends query messages to the
processes it is waiting for. If certain messages eventually come back to the original
process, it can conclude that a deadlock exists. In effect, the algorithm is looking
for a knot in a directed graph.

Redundancy Techniques

All the redundancy techniques that have emerged take advantage of the existence
of multiple processors by duplicating critical processes on two or more machines.
A particularly simple, but effective, technique is to provide every process with a
backup process on a different processor. All processes communicate by message
passing.

Whenever anyone sends a message to a process, it also sends the same message to
the backup process. The system ensures that neither the primary nor the backup
can continue running until it has been verified that both have correctly received the
message. Thus, if one process crashes because of any hardware fault, the other one
can continue. Furthermore, the remaining process can then clone itself, making a
new backup to maintain the fault tolerance in the future. One disadvantage of
duplicating every process is the extra processors required, but another, more subtle
problem is that, if processes exchange messages at a high rate, a considerable
amount of CPU time may go into keeping the processes synchronized at each
message exchanged. If a process crashes, recovery is done by sending the most

12
OPERATING SYSTEM II

recent checkpoint to an idle processor and telling it to start running. The recorder
process then spoon feeds it all the messages that the original process received
between the checkpoint and the crash. Messages sent by the newly restarted
process are discarded. Once the new process has worked its way up to the point of
crash, it begins sending and receiving messages normally, without help from the
recording process.

STRENGTH AND WEAKNESS OF DISTRIBUTED OPERATING SYSTEM

STRENGTH
 The main goal of distributed system is the enormous rate of technological

change in micro processor technology.
 Micro processors have become powerful and cheap compared with

mainframes and minicomputer, so it has become attractive to think about
designing large system that composes of many processors.

 Relative simplicity of software: each software has a dedicated function.
 Incremental growth.
 Reliability and availability.

WEAKNESS
 Unless one is very careful, it is easy for the communication protocol

overhead to become a major source of in efficiency.
 With distributed systems, a high degree of fault tolerance is often, at least,

an implicit goal.
 A more fundamental problem in distributed system is the lack of global state

information.
 It is hard to schedule the processor optimally if you are not sure how many

are up at the moment.

CONCLUSION

Distributed operating systems are still in an early phase of development, with many
unanswered questions and relatively little agreement among workers in the field
about how things should be done. Many experimental systems use the client-server
model with some form of remote procedure call as the communication base, but
there are also systems built on the connection model. Relatively little has been
done on distributed naming, protection, and resource management, other than
building straightforward name servers and process servers.
Fault tolerance is an up-and-coming area, with work progressing in redundancy
techniques and atomic actions. Finally, a considerable amount of work has gone
into the construction of file servers, print servers, and various other servers, but

13
OPERATING SYSTEM II

here too there is much work to be done. The only conclusion that we draw is that
distributed operating systems will be an interesting and fruitful area of research for
a number of years to come.

