
 

 Accounting information and limits  

 

  Add the process to the ready list  

 

  Initial allocation of memory and resources must be a subset of parent’s and 

be assigned as shared  Initial priority of the process can be greater than the 

parent’s 

 

Management of processes in UNIX 

How processes are managed after creation in UNIX 

  

1.    Suspend - Change process state to suspended  

 A process may suspend only its descendants 

  May include cascaded suspension 

 Stop the process if the process is in running state and save the state of 

the processor in the process control block 

  If process is already in blocked state, then leave it blocked, else 

change its state to ready state 

  If need be, call the scheduler to schedule the processor to some other 

process 

2.     Activate - Change process state to active 

 Change one of the descendant processes to ready state 

  Add the process to the ready list 

3.     Destroy - Remove one or more processes   

 Cascaded destruction 

  Only descendant processes may be destroyed  



  If the process to be “killed" is running, stop its execution   

 Free all the resources currently allocated to the process  

  Remove the process control block associated with the killed process 

4. Change priority -  Set a new priority for the process  

 Change the priority in the process control block 

 Move the process to a different queue to reflect the new priority 

 

 

3.4.2  Scheduling in UNIX 

Scheduler decides the process to run first by using a scheduling algorithm  

3.4.2.1 Type of scheduling used in UNIX 

Pre-emptibility 

  In UNIX, Processes in user space are pre-emptible - what this means is that a 

process may have the CPU taken away from it arbitrarily. This is how pre-emptive 

multitasking works: the scheduling routine will periodically suspend the currently 

executing process, and possibly schedule another task to run on that CPU. This 

means that theoretically, a process can be in a situation where it never gets the 

CPU back. In reality the scheduling code has an interest in fairness and will try to 

give the CPU to each process with a weak level of fairness, but there are no 

guarantees 

  

  Algorithms are: 

 



 Shortest Remaining Time Scheduling 

o Preemptive version of shortest job next scheduling 

o Preemptive in nature (only at arrival time) 

o Highest priority to process that need least time to complete 

o Priority function P 

o Schedule for execution 

o Average waiting time calculations  

 Round-Robin Scheduling  

o Preemptive in nature 

o Preemption based on time slices or time quanta  

o Time quantum between 10 and 100 milliseconds  

o All user processes treated to be at the same priority 

o Ready queue treated as a circular queue 

Desirable features of a scheduling algorithm 

1. Fairness: Make sure each process gets its fair share of the CPU  

2. Efficiency: Keep the CPU busy 100% of the time  

3. Response time: Minimize response time for interactive users 

4. Turnaround: Minimize the time batch users must wait for output  

5. Throughput: Maximize the number of jobs processed per hour 

  

3.5 DEVICE MANAGEMENT 

To perform useful functions, processes need access to the peripherals connected to 

the computer, which are controlled by the kernel through device drivers. For 

example, to show the user something on the screen, an application would make a 

request to the kernel, which would forward the request to its display driver, which 

is then responsible for actually plotting the character/pixel. 

 



3.5.1 Special features of  Device management in UNIX 

      

Device drivers run as part of the kernel, either compiled in or as run-time loadable 

modules. The kernel architectures, Monolithic kernel does this and it have the 

advantage of speed and efficiency. 

 

 Device manager   

 Device manager will be the interface between the device drivers and the both the 

rest of the kernel and user applications.  

      The device manager needs to do two things: 

1. Isolate devices drivers from the kernel so that driver writers can worry about 

interfacing to the hardware and not about interfacing to the kernel 

2.  Isolate user applications from the hardware so that applications can work on 

the majority of devices the user might connect to their system 

         In most operating systems, the device manager is the only part of the kernel 

that programmers really see. Writing a good interface will make the difference 

between an efficient and reliable OS which works with a variety of devices and an 

OS which you spend all your own time writing and debugger drivers for. 

                     Capabilities of device manager 

1. Asynchronous I/O: that is, applications will be able to start an I/O operation 

and continue to run until it terminates. 

2. Plug and Play: drivers will be able to be loaded and unloaded as devices are 

added to and removed from the system. Devices will be detected automatically 

on system startup, if possible. 

 

  Drivers 



Because we want our kernel to be plug-and-play capable, it isn’t enough for drivers 

to be added to the kernel at compile time, as Minix and old Linux do. We must be 

able to load and unload them at run time. This isn’t difficult: it just means we have 

to extend the executable file interface to kernel mode. 

 

 Interfaces 

Once we’ve detected the devices installed in the system we need to keep a record 

of them somewhere. The standard Unix model, employed by Minix and Linux, is 

to keep directory somewhere in the file system. This directory is filled with special 

directory entries, directory entries which don’t point to any data, each of which 

refers to a specific device via major and minor device numbers. The major device 

number specifies the device type or driver to use and the minor number specifies a 

particular device implemented by that drivers.  

   

 

  

3.6 Security 

An important kernel design decision is the choice of the abstraction levels where 

the security mechanisms and policies should be implemented. Kernel security 

mechanisms play a critical role in supporting security at higher levels. 

One approach is to use firmware and kernel support for fault tolerance (see above), 

and build the security policy for malicious behavior on top of that (adding features 

such as cryptography mechanisms where necessary), delegating some 

responsibility to the compiler. Approaches that delegate enforcement of security 



policy to the compiler and/or the application level are often called language-based 

security. 

The lack of many critical security mechanisms in current mainstream operating 

systems impedes the implementation of adequate security policies at the 

application abstraction level. In fact, a common misconception in computer 

security is that any security policy can be implemented in an application regardless 

of kernel support. 

4.0 ADVANTAGES OF UNIX O/S 

- Unix is more flexible and can be installed on many different types of machines, 

including main-frame computers, supercomputers and micro-computers.  

- Unix is more stable and does not go down as often as Windows does, therefore 

requires less administration and maintenance.  

- Unix has greater built-in security and permissions features than Windows.  

- Unix possesses much greater processing power than Windows.  

- Unix is the leader in serving the Web. About 90% of the Internet relies on Unix 

operating systems running Apache, the world's most widely used Web server.  

- Software upgrades from Microsoft often require the user to purchase new or more 

hardware or prerequisite software. That is not the case with Unix.  

- The mostly free or inexpensive open-source operating systems, such as Linux and 

BSD, with their flexibility and control, are very attractive to (aspiring) computer 



wizards. Many of the smartest programmers are developing state-of-the-art 

software free of charge for the fast growing "open-source movement”.  

- Unix also inspires novel approaches to software design, such as solving problems 

by interconnecting simpler tools instead of creating large monolithic application 

programs.  

   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER TWO - LINUX 

 
Introduction 

 
What is Linux? 
Linux is a UNIX-like operating system that runs on many different computers. 
Linux was first released in 1991 by its author Linus Torvalds at the University of 
Helsinki and developed by Linus Torvalds (author) and Andrew Morton. Linux is 
the operating system kernel, which comes with a distribution of software The 
Linux kernel is an operating system kernel used by a family of Unix-like operating 
system. It started out as a personal computer system used by individuals, and has 
since gained the support of several large operations such as HP, IBM, and Sun 
microsystem. It now used mostly as the server operating system. It’s a prime 
example of open source development system. It’s written in C  
 
Since then it has grown tremendously in popularity as programmers around the 
world embraced his project of building a free operating system, adding features, 
and fixing problems. Linux is portable, which means you’ll find versions running 
on name-brand or clone PCs, Apple Macintoshes, Sun workstations, or Digital 
Equipment Corporation Alpha-based computers. Linux also comes with source 
code, so you can change or customize the software to adapt to your needs. Finally, 
Linux is a great operating system, rich in features adopted from other versions of 
UNIX. The term Linux distribution is used to refer to the various operating 
systems that run on top of the Linux kernel. Linux is one of the most prominent 
examples of free/open source software. Today, the Linux kernel has received 
contributions from thousands of programmers. 
 
 

Event Leading To the Creation  
The UNIX operating system was conceived and implemented in 1960 and first 
released in 1970.  Its portability and availability caused it to the widely adopted and 
modified by academic institutions and businesses. In 1983, Richard Stallman started the GNU 
project with the goal of creating a free UNIX like operating system. As part of the work, he 
wrote the GNU general public license (GPL). By the early 1990’s there was almost enough 
available software to create a full operating system. However, the GNU kernel called HURD, 
failed to attract attention from developers leaving GNU incomplete. A solution seemed to appear 
in form of MINIX. It was released by Andrew S Tanenbaum in 1987, as an operating system, 
MINIX was not a superb one while source code was available, modification and retribution was 
restricted. This factors and lack of widely adopted free kernel made Torvalds start is project. 



Processes 
 
The concept of a process is fundamental to any multiprogramming operating 
system. A process is usually defined as an instance of a program in execution; thus, 
if 16 users are running vi at once, there are 16 separate processes (although they 
can share the same executable code). Processes are often called "tasks" in Linux 
source code. 
Properties of processes  

 Static 
 Dynamic 

Process Descriptor 
 
In order to manage processes, the kernel must have a clear picture of what each 
process is doing. It must know, for instance, the process's priority, whether it is 
running on the CPU or blocked on some event, what address space has been 
assigned to it, which files it is allowed to address, and so on. This is the role of the 
process descriptor, that is, of a task_struct type structure whose fields contain all 
the information related to a single process. As the repository of so much 
information, the process descriptor is rather complex. Not only does it contain 
many fields itself, but some contain pointers to other data structures that, in turn, 
contain pointers to other structures. The figure below describes the Linux process  
descriptor schematically. 
 
Figure 1   The Linux Process Descriptor 



 
 
The five data structures on the right side of the figure refer to specific resources 
owned by the process. These resources will be covered in future chapters. This 
chapter will focus on two types of fields that refer to the process state and to 
process parent/child relationships. 
 
Process State 
 
As its name implies, the ‘state’ field of the process descriptor describes what is 
currently happening to the process. It consists of an array of flags, each of which 
describes a possible process state. In the current Linux version these states are 
mutually exclusive, and hence exactly one flag of state  is set; the remaining flags 
are cleared. The following are thepossible process states: 
 
TASK_RUNNING  
 
The process is either executing on the CPU or waiting to be executed. 
 
 



TASK_INTERRUPTIBLE 
 
The process is suspended (sleeping) until some condition becomes true. Raising a 
hardware interrupt, releasing a system resource the process is waiting for, or 
delivering a signal are examples of conditions that might wake up the process, that 
is, put its state back to TASK_RUNNING. 
 
TASK_UNINTERRUPTIBLE 
 
Like the previous state, except that delivering a signal to the sleeping process 
leaves its state unchanged. This process state is seldom used. It is valuable, 
however, under certain specific conditions in which a process must wait until a 
given event occurs without being interrupted. For instance, this state may be used 
when a process opens a device file and the corresponding device driver starts 
probing for a corresponding hardware device. The device driver must not be 
interrupted until the probing is complete, or the hardware device could be left in an 
unpredictable state. 
 
TASK_STOPPED 
 
Process execution has been stopped: the process enters this state after receiving a 
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being 
monitored by another (such as when a debugger executes a ptrace( ) system call to 
monitor a test program), any signal may put the process in the TASK_STOPPED 
state. 
 
TASK_ZOMBIE 
 
Process execution is terminated, but the parent process has not yet issued a wait( )- 
like system call (wait2( ), wait3( ), wait4( ), or waitpid( )) to return information 
about the dead process. Before the wait( )-like call is issued, the kernel cannot 
discard the data contained in the dead process descriptor because the parent  could 
need it 
 
 
Identifying A Process 
 
Any Unix-like operating system, on the other hand, allows users to identify 
processes by means of a number called the Process ID (or PID). The PID is a 32-
bit unsigned integer stored in the PID field of the process descriptor. PIDs are 



numbered sequentially: the PID of a newly created process is normally the PID of 
the previously created process incremented by one. However, for compatibility 
with traditional Unix systems developed for 16-bit hardware platforms, the 
maximum PID number allowed on Linux is 32767. When the kernel creates the 
32768th process in the system, it must start recycling the lower unused PIDs. 
 
 

Memory Management 

The memory management subsystem is one of the most important parts of the 
operating system. Since the early days of computing, there has been a need for 
more memory than exists physically in a system. Strategies have been developed to 
overcome this limitation and the most successful of these is virtual memory. 
Virtual memory makes the system appear to have more memory than is physically 
present by sharing it among competing processes as they need it. Virtual memory 
does more than just make your computer's memory go farther. The memory 
management subsystem provides:  

Large Address Spaces  

The operating system makes the system appear as if it has a larger amount of 
memory than it actually has. The virtual memory can be many times larger than the 
physical memory in the system.  

Protection  
 
Each process in the system has its own virtual address space. These virtual address 
spaces are completely separate from each other and so a process running one 
application cannot affect another. Also, the hardware virtual memory mechanisms 
allow areas of memory to be protected against writing. This protects code and data 
from being overwritten by rogue applications.  
 
Memory Mapping  
 
Memory mapping is used to map image and data files into a process' address space. 
In memory mapping, the contents of a file are linked directly into the virtual 
address space of a process.  
 
 


