» Accounting information and limits

» Add the process to the ready list

> Initial allocation of memory and resources must be a subset of parent’s and
be assigned as shared Initial priority of the process can be greater than the

parent’s

Management of processes in UNIX

How processes are managed after creation in UNIX

1. Suspend - Change process state to suspended
» A process may suspend only its descendants
» May include cascaded suspension
» Stop the process if the process is in running state and save the state of
the processor in the process control block
» If process is already in blocked state, then leave it blocked, else
change its state to ready state
> If need be, call the scheduler to schedule the processor to some other
process
2. Activate - Change process state to active
» Change one of the descendant processes to ready state
» Add the process to the ready list
3. Destroy - Remove one or more processes
» Cascaded destruction

> Only descendant processes may be destroyed

> If the process to be “killed" is running, stop its execution
> Free all the resources currently allocated to the process
» Remove the process control block associated with the killed process
4. Change priority - Set a new priority for the process
» Change the priority in the process control block

» Move the process to a different queue to reflect the new priority

3.4.2 Scheduling in UNIX

Scheduler decides the process to run first by using a scheduling algorithm
3421 Type of scheduling used in UNIX

Pre-emptibility

In UNIX, Processes in user space are pre-emptible - what this means is that a
process may have the CPU taken away from it arbitrarily. This is how pre-emptive
multitasking works: the scheduling routine will periodically suspend the currently
executing process, and possibly schedule another task to run on that CPU. This
means that theoretically, a process can be in a situation where it never gets the
CPU back. In reality the scheduling code has an interest in fairness and will try to
give the CPU to each process with a weak level of fairness, but there are no

guarantees

Algorithms are:

» Shortest Remaining Time Scheduling

0 Preemptive version of shortest job next scheduling
Preemptive in nature (only at arrival time)
Highest priority to process that need least time to complete

Priority function P

o O O O

Schedule for execution

0 Average waiting time calculations

» Round-Robin Scheduling

o Preemptive in nature

0 Preemption based on time slices or time quanta

o Time quantum between 10 and 100 milliseconds

o0 All user processes treated to be at the same priority

0 Ready queue treated as a circular queue

Desirable features of a scheduling algorithm

1.

2
3
4.
3)

3.5

Fairness: Make sure each process gets its fair share of the CPU
Efficiency: Keep the CPU busy 100% of the time

Response time: Minimize response time for interactive users
Turnaround: Minimize the time batch users must wait for output

Throughput: Maximize the number of jobs processed per hour

DEVICE MANAGEMENT

To perform useful functions, processes need access to the peripherals connected to

the computer, which are controlled by the kernel through device drivers. For

example, to show the user something on the screen, an application would make a

request to the kernel, which would forward the request to its display driver, which

Is then responsible for actually plotting the character/pixel.

35.1 Special features of Device management in UNIX

Device drivers run as part of the kernel, either compiled in or as run-time loadable
modules. The kernel architectures, Monolithic kernel does this and it have the

advantage of speed and efficiency.

> Device manager
Device manager will be the interface between the device drivers and the both the
rest of the kernel and user applications.
The device manager needs to do two things:
1. Isolate devices drivers from the kernel so that driver writers can worry about
interfacing to the hardware and not about interfacing to the kernel
2. Isolate user applications from the hardware so that applications can work on
the majority of devices the user might connect to their system
In most operating systems, the device manager is the only part of the kernel
that programmers really see. Writing a good interface will make the difference
between an efficient and reliable OS which works with a variety of devices and an
OS which you spend all your own time writing and debugger drivers for.
Capabilities of device manager
1. Asynchronous I/O: that is, applications will be able to start an 1/O operation
and continue to run until it terminates.
2. Plug and Play: drivers will be able to be loaded and unloaded as devices are
added to and removed from the system. Devices will be detected automatically

on system startup, if possible.

> Drivers

Because we want our kernel to be plug-and-play capable, it isn’t enough for drivers
to be added to the kernel at compile time, as Minix and old Linux do. We must be
able to load and unload them at run time. This isn’t difficult: it just means we have

to extend the executable file interface to kernel mode.

> Interfaces
Once we’ve detected the devices installed in the system we need to keep a record
of them somewhere. The standard Unix model, employed by Minix and Linux, is
to keep directory somewhere in the file system. This directory is filled with special
directory entries, directory entries which don’t point to any data, each of which
refers to a specific device via major and minor device numbers. The major device
number specifies the device type or driver to use and the minor number specifies a

particular device implemented by that drivers.

3.6 Security

An important kernel design decision is the choice of the abstraction levels where
the security mechanisms and policies should be implemented. Kernel security

mechanisms play a critical role in supporting security at higher levels.

One approach is to use firmware and kernel support for fault tolerance (see above),
and build the security policy for malicious behavior on top of that (adding features

such as cryptography mechanisms where necessary), delegating some

responsibility to the compiler. Approaches that delegate enforcement of security

policy to the compiler and/or the application level are often called language-based

security.

The lack of many critical security mechanisms in current mainstream operating
systems impedes the implementation of adequate security policies at the

application abstraction level. In fact, a common misconception in computer

security is that any security policy can be implemented in an application regardless
of kernel support.
4.0 ADVANTAGES OF UNIX O/S

- Unix is more flexible and can be installed on many different types of machines,

including main-frame computers, supercomputers and micro-computers.

- Unix is more stable and does not go down as often as Windows does, therefore

requires less administration and maintenance.

- Unix has greater built-in security and permissions features than Windows.

- Unix possesses much greater processing power than Windows.

- Unix is the leader in serving the Web. About 90% of the Internet relies on Unix

operating systems running Apache, the world's most widely used Web server.

- Software upgrades from Microsoft often require the user to purchase new or more

hardware or prerequisite software. That is not the case with Unix.

- The mostly free or inexpensive open-source operating systems, such as Linux and

BSD, with their flexibility and control, are very attractive to (aspiring) computer

wizards. Many of the smartest programmers are developing state-of-the-art

software free of charge for the fast growing "open-source movement”.

- Unix also inspires novel approaches to software design, such as solving problems
by interconnecting simpler tools instead of creating large monolithic application
programs.

CHAPTER TWO - LINUX

Introduction

What is Linux?

Linux is a UNIX-like operating system that runs on many different computers.
Linux was first released in 1991 by its author Linus Torvalds at the University of
Helsinki and developed by Linus Torvalds (author) and Andrew Morton. Linux is
the operating system kernel, which comes with a distribution of software The
Linux kernel is an operating system kernel used by a family of Unix-like operating
system. It started out as a personal computer system used by individuals, and has
since gained the support of several large operations such as HP, IBM, and Sun
microsystem. It now used mostly as the server operating system. It’s a prime
example of open source development system. It’s written in C

Since then it has grown tremendously in popularity as programmers around the
world embraced his project of building a free operating system, adding features,
and fixing problems. Linux is portable, which means you’ll find versions running
on name-brand or clone PCs, Apple Macintoshes, Sun workstations, or Digital
Equipment Corporation Alpha-based computers. Linux also comes with source
code, so you can change or customize the software to adapt to your needs. Finally,
Linux is a great operating system, rich in features adopted from other versions of
UNIX. The term Linux distribution is used to refer to the various operating
systems that run on top of the Linux kernel. Linux is one of the most prominent
examples of free/open source software. Today, the Linux kernel has received
contributions from thousands of programmers.

Event Leading To the Creation
The UNIX operating system was conceived and implemented in 1960 and first

released in 1970. Its portability and availability caused it to the widely adopted and
modified by academic institutions and businesses. In 1983, Richard Stallman started the GNU
project with the goal of creating a free UNIX like operating system. As part of the work, he
wrote the GNU general public license (GPL). By the early 1990°s there was almost enough
available software to create a full operating system. However, the GNU kernel called HURD,
failed to attract attention from developers leaving GNU incomplete. A solution seemed to appear
in form of MINIX. It was released by Andrew S Tanenbaum in 1987, as an operating system,
MINIX was not a superb one while source code was available, modification and retribution was
restricted. This factors and lack of widely adopted free kernel made Torvalds start is project.

Processes

The concept of a process is fundamental to any multiprogramming operating
system. A process is usually defined as an instance of a program in execution; thus,
if 16 users are running vi at once, there are 16 separate processes (although they
can share the same executable code). Processes are often called "tasks" in Linux
source code.
Properties of processes

e Static

e Dynamic

Process Descriptor

In order to manage processes, the kernel must have a clear picture of what each
process is doing. It must know, for instance, the process's priority, whether it is
running on the CPU or blocked on some event, what address space has been
assigned to it, which files it is allowed to address, and so on. This is the role of the
process descriptor, that is, of a task_struct type structure whose fields contain all
the information related to a single process. As the repository of so much
information, the process descriptor is rather complex. Not only does it contain
many fields itself, but some contain pointers to other data structures that, in turn,
contain pointers to other structures. The figure below describes the Linux process
descriptor schematically.

Figure 1 The Linux Process Descriptor

state

flags
need_resched
counter
priority
nexl_task
prev_lask
next_mn
Prev_rum

p_optr
p_pptr

55

s

files

rrm
signal_lock
5ig

The five data structures on the right side of the figure refer to specific resources
owned by the process. These resources will be covered in future chapters. This
chapter will focus on two types of fields that refer to the process state and to
process parent/child relationships.

Process State

As its name implies, the ‘state’ field of the process descriptor describes what is
currently happening to the process. It consists of an array of flags, each of which
describes a possible process state. In the current Linux version these states are
mutually exclusive, and hence exactly one flag of state is set; the remaining flags

TYTY

T

-

iy _struct
-

fs_struck

files_struct
1

A
mm_SIruCt

sigmal_struct

Ty

the Associated with the Rrocess

Curramt irgctory

Pointers to Fie

e LNESERDIONS

Painters 1o Mamary
= Aegions Descriplors

Signals Recalved

are cleared. The following are thepossible process states:

TASK_RUNNING

The process is either executing on the CPU or waiting to be executed.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a
hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process, that
IS, put its state back to TASK_RUNNING.

TASK_UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process
leaves its state unchanged. This process state is seldom used. It is valuable,
however, under certain specific conditions in which a process must wait until a
given event occurs without being interrupted. For instance, this state may be used
when a process opens a device file and the corresponding device driver starts
probing for a corresponding hardware device. The device driver must not be
interrupted until the probing is complete, or the hardware device could be left in an
unpredictable state.

TASK_STOPPED

Process execution has been stopped: the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being
monitored by another (such as when a debugger executes a ptrace() system call to
monitor a test program), any signal may put the process in the TASK_STOPPED
state.

TASK_ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait()-
like system call (wait2(), wait3(), wait4(), or waitpid()) to return information
about the dead process. Before the wait()-like call is issued, the kernel cannot
discard the data contained in the dead process descriptor because the parent could
need it

Identifying A Process

Any Unix-like operating system, on the other hand, allows users to identify
processes by means of a number called the Process ID (or PID). The PID is a 32-
bit unsigned integer stored in the PID field of the process descriptor. PIDs are

numbered sequentially: the PID of a newly created process is normally the PID of
the previously created process incremented by one. However, for compatibility
with traditional Unix systems developed for 16-bit hardware platforms, the
maximum PID number allowed on Linux is 32767. When the kernel creates the
32768th process in the system, it must start recycling the lower unused PIDs.

Memory Management

The memory management subsystem is one of the most important parts of the
operating system. Since the early days of computing, there has been a need for
more memory than exists physically in a system. Strategies have been developed to
overcome this limitation and the most successful of these is virtual memory.
Virtual memory makes the system appear to have more memory than is physically
present by sharing it among competing processes as they need it. Virtual memory
does more than just make your computer's memory go farther. The memory
management subsystem provides:

Large Address Spaces

The operating system makes the system appear as if it has a larger amount of
memory than it actually has. The virtual memory can be many times larger than the
physical memory in the system.

Protection

Each process in the system has its own virtual address space. These virtual address
spaces are completely separate from each other and so a process running one
application cannot affect another. Also, the hardware virtual memory mechanisms
allow areas of memory to be protected against writing. This protects code and data
from being overwritten by rogue applications.

Memory Mapping
Memory mapping is used to map image and data files into a process' address space.

In memory mapping, the contents of a file are linked directly into the virtual
address space of a process.

