
Fair Physical Memory Allocation  
The memory management subsystem allows each running process in the system a 
fair share of the physical memory of the system.  
 
Shared Virtual Memory  
 
Although virtual memory allows processes to have separate (virtual) address 
spaces, there are times when you need processes to share memory. For example 
there could be several processes in the system running the bash command shell. 
Rather than have several copies of bash, one in each process's virtual address 
space, it is better to have only one copy in physical memory and all of the 
processes running bash share it. Dynamic libraries are another common example of 
executing code shared between several processes.  

Shared memory can also be used as an Inter Process Communication (IPC) 
mechanism, with two or more processes exchanging information via memory 
common to all of them. Linux supports the Unix System V shared memory IPC.  

3.1  An Abstract Model of Virtual Memory 

 
Figure 3.1: Abstract model of Virtual to Physical address mapping 



Before considering the methods that Linux uses to support virtual memory it is 
useful to consider an abstract model that is not cluttered by too much detail.  

As the processor executes a program it reads an instruction from memory and 
decodes it. In decoding the instruction it may need to fetch or store the contents of 
a location in memory. The processor then executes the instruction and moves onto 
the next instruction in the program. In this way the processor is always accessing 
memory either to fetch instructions or to fetch and store data.  

In a virtual memory system all of these addresses are virtual addresses and not 
physical addresses. These virtual addresses are converted into physical addresses 
by the processor based on information held in a set of tables maintained by the 
operating system.  

To make this translation easier, virtual and physical memory are divided into 
handy sized chunks called pages. These pages are all the same size, they need not 
be but if they were not, the system would be very hard to administer. Linux on 
Alpha AXP systems uses 8 Kbyte pages and on Intel x86 systems it uses 4 Kbyte 
pages. Each of these pages is given a unique number; the page frame number 
(PFN).  

In this paged model, a virtual address is composed of two parts; an offset and a 
virtual page frame number. If the page size is 4 Kbytes, bits 11:0 of the virtual 
address contain the offset and bits 12 and above are the virtual page frame number. 
Each time the processor encounters a virtual address it must extract the offset and 
the virtual page frame number. The processor must translate the virtual page frame 
number into a physical one and then access the location at the correct offset into 
that physical page. To do this the processor uses page tables.  

 
 

Interrupts And Exceptions 
 
An interrupt is usually defined as an event that alters the sequence of instructions 
executed by a processor. Such events correspond to electrical signals generated by 
hardware circuits both inside and outside of the CPU chip. 
Interrupts are often divided into synchronous and asynchronous interrupts: 
 
• Synchronous interrupts are produced by the CPU control unit while executing 



instructions and are called synchronous because the control unit issues them only 
after terminating the execution of an instruction. 
 
• Asynchronous interrupts are generated by other hardware devices at arbitrary 
times with respect to the CPU clock signals. Intel 80x86 microprocessor manuals 
designate synchronous and asynchronous interrupts as exceptions and interrupts, 
respectively. We'll adopt this classification, although we'll 
occasionally use the term "interrupt signal" to designate both types together 
(synchronous as well as asynchronous). Interrupts are issued by interval timers and 
I/O devices; for instance, the arrival of a keystroke from a user sets off an interrupt. 
Exceptions, on the other hand, are caused either by programming errors or by 
anomalous conditions that must be handled by the kernel. In the first case, the 
kernel handles the exception by delivering to the current process one of the signals 
familiar to every Unix programmer. In the second case, the kernel performs all the 
steps needed to recover from the anomalous condition, such as a page fault or a 
request (via an int instruction) for a kernel service. 
 
The Role of Interrupt Signals 
 
As the name suggests, interrupt signals provide a way to divert the processor to 
code outside the normal flow of control. When an interrupt signal arrives, the CPU 
must stop what it's currently doing and switch to a new activity; it does this by 
saving the current value of the program counter (i.e., the content of the eip and cs 
registers) in the Kernel Mode stack and by placing an address related to the 
interrupt type into the program counter. There is a key difference between interrupt 
handling and process switching: the code executed by an interrupt or by an 
exception handler is not a process. Rather, it is a kernel control path that runs on 
behalf of the same process that was running when the interrupt occurred. As a 
kernel control path, the interrupt handler is lighter than a process (it has less 
context and requires less time to set up or tear down). 
 
 Interrupt handling is one of the most sensitive tasks performed by the kernel, since 
it must satisfy the following constraints: 
 
• Interrupts can come at any time, when the kernel may want to finish something 
else it was trying to do. The kernel's goal is therefore to get the interrupt out of the 
way as soon as possible and defer as much processing as it can. For instance, 
suppose a block of data has arrived on a network line. When the hardware 
interrupts the kernel, it could simply mark the presence of data, give the processor 
back to whatever was running before, and do the rest of the processing later (like 



moving the data into a buffer where its recipient process can find it and restarting 
the process). The activities that the kernel needs to perform in response to an 
interrupt are thus divided into two parts: a top half that the kernel executes right 
away and a bottom half that is left for later. The kernel keeps a queue pointing to 
all the functions that represent bottom halves waiting to be executed and pulls them 
off the queue to execute them at particular points in processing. 
 
• Since interrupts can come at any time, the kernel might be handling one of them 
while another one (of a different type) occurs. This should be allowed as much as 
possible since it keeps the I/O devices busy. As a result, the interrupt handlers must 
be coded so that the corresponding kernel control paths can be executed in a nested 
manner. When the last kernel control path terminates, the kernel must be able to 
resume execution of the interrupted process or switch to another process if the 
interrupt signal has caused a rescheduling activity. 
 
• Although the kernel may accept a new interrupt signal while handling a previous 
one, some critical regions exist inside the kernel code where interrupts must be 
disabled. Such critical regions must be limited as much as possible since, 
according to the previous requirement, the kernel, and in particular the interrupt 
handlers, should run most of the time with the interrupts enabled.  
 
 Interrupts and Exceptions 
 
The Intel documentation classifies interrupts and exceptions as follows: 
• Interrupts: 
 
Maskable interrupts 
 
Sent to the INTR pin of the microprocessor. They can be disabled by clearing the 
IF flag of the eflags register. All IRQs issued by I/O devices give rise to maskable 
interrupts.  
 
 
Nonmaskable interrupts 
 
Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not 
disabled by clearing the IF flag. Only a few critical events, such as hardware 
failures, 
give rise to nonmaskable interrupts. 
• Exceptions: 



 
Processor-detected exceptions 
 
Generated when the CPU detects an anomalous condition while executing an 
instruction. These are further divided into three groups, depending on the value of 
the eip register that is saved on the Kernel Mode stack when the CPU control unit 
raises the exception: 
 
Faults 
 
The saved value of eip is the address of the instruction that caused the fault, and 
hence that instruction can be resumed when the exception handler terminates. 
Resuming the same instruction is necessary whenever the handler is able to correct 
the anomalous condition that caused the exception. 
 
Traps 
The saved value of eip is the address of the instruction that should be executed 
after the one that caused the trap. A trap is triggered only when there is no need to 
re-execute the instruction that was terminated. The main use of traps is for 
debugging purposes: the role of the interrupt signal in this case is to notify the 
debugger that a specific instruction has been executed (for instance, a breakpoint 
has been reached within a program). Once the user has examined the data provided 
by the debugger, she may ask that execution of the debugged program resume 
starting from the next instruction. 
 
Aborts 
 
A serious error occurred; the control unit is in trouble, and it may be unable to 
store a meaningful value in the eip register. Aborts are caused by hardware failures 
or by invalid values in system tables. The interrupt signal sent by the control unit is 
an emergency signal used to switch control to the corresponding abort exception 
handler. This handler has no choice but to force the affected process to terminate. 
 
Programmed exceptions 
 
Occur at the request of the programmer. They are triggered by int or int3 
instructions; the ‘into’ (check for overflow) and ’bound’ (check on address bound) 
instructions also give rise to a programmed exception when the condition they are 
checking is not true. Programmed exceptions are handled by the control unit as 



traps; they are often called software interrupts. Such exceptions have two common 
uses: to implement system calls, and to notify a debugger of a specific event. 
Linux uses two types of descriptors: 
 
Interrupt gates & trap gates. 
Trap gate: Trap gates are used for activating exception handlers. 
 
Interrupt gate: Cannot be accessed by user mode progs 
 
 

The Linux Booting Process 
 

In most cases, the Linux kernel is loaded from a hard disk, and a two-stage boot 
loader is required. The most commonly used Linux boot loader on Intel systems is 
named LILO (Linux Loader); corresponding programs exist for other architectures. 
LILO may be installed either on the MBR, replacing the small program that loads 
the boot sector of the active partition, or in the boot sector of a (usually active) disk 
partition. In both cases, the final result is the same: when the loader is executed at 
boot time, the user may choose which operating system to load. The LILO boot 
loader is broken into two parts, since otherwise it would be too large to fit into 
the MBR. The MBR or the partition boot sector includes a small boot loader, 
which is loaded into RAM starting from address 0x00007c00 by the BIOS. This 
small program moves itself to the address 0x0009a000, sets up the Real Mode 
stack (ranging from 0x0009b000 to 0x0009a200), and loads the second part of the 
LILO boot loader into RAM starting from address 0x0009b000. In turn, this latter 
program reads a map of available operating systems from disk and offers the user a 
prompt so she can choose one of them. Finally, after the user has chosen the kernel 
to be loaded (or let a time-out elapse so that LILO chooses a default), the boot 
loader may either copy the boot sector of the corresponding partition into RAM 
and execute it or directly copy the kernel image into RAM. Assuming that a Linux 
kernel image must be booted, the LILO boot loader, which relies on BIOS 
routines, performs essentially the same operations as the boot loader integrated into 
the kernel image described in the previous section about floppy disks. The loader 
displays the "Loading Linux" message; then it copies the integrated boot loader of 
the kernel image to address 0x00090000, the setup( ) code to address 0x00090200, 
and the rest of the kernel image to address 0x00010000 or 0x00100000. Then it 
jumps to the setup( ) code. 
 
The setup( ) functions 



1. Invokes a BIOS procedure to find out the amount of RAM available in the 
system. 
 
2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past 
a certain amount of time, the keyboard device sends the corresponding keycode 
over and over to the CPU.) 
 
3. Initializes the video adapter card. 
 
4. Reinitializes the disk controller and determines the hard disk parameters. 
 
5. Checks for an IBM Micro Channel bus (MCA). 
 
6. Checks for a PS/2 pointing device (bus mouse). 
 
7. Checks for Advanced Power Management (APM) BIOS support. 
 
8. If the kernel image was loaded low in RAM (at physical address 0x00010000), 
moves it to physical address 0x00001000. Conversely, if the kernel image was 
loaded high in RAM, does not move it. This step is necessary because, in order to 
be able to store the kernel image on a floppy disk and to save time while booting, 
the kernel image stored on disk is compressed, and the decompression routine 
needs some free space to use as a temporary buffer following the kernel image in 
RAM. 
 
9. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global 
Descriptor Table (GDT). 
 
10. Resets the floating point unit (FPU), if any. 
 
11. Reprograms the Programmable Interrupt Controller (PIC) and maps the 16 
hardware interrupts (IRQ lines) to the range of vectors from 32 to 47. The kernel 
must perform this step because the BIOS erroneously maps the hardware interrupts 
in the range from to 15, which is already used for CPU exceptions (see Section 
4.2.3 in Chapter 4). 
 
12. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in 
the cr0 status register. The provisional kernel page tables contained in 
swapper_pg_dir and pg0 identically map the linear addresses to the same physical 



addresses. Therefore, the transition from Real Mode to Protected Mode goes 
smoothly. 
 
13. Jumps to the startup_32( ) assembly language function. 
 
The startup_32( ) Functions 
 
There are two different startup_32( ) functions; the one we refer to here is coded in 
the arch/i386/boot/compressed/head.S file. After setup( ) terminates, the function 
has been moved either to physical address 0x00100000 or to physical address 
0x00001000, depending on whether the kernel image was loaded high or low in 
RAM. 
 
This function performs the following operations: 
 
1. Initializes the segmentation registers and a provisional stack. 
 
2. Fills the area of uninitialized data of the kernel identified by the _edata and _end 
symbols with zeros. 
 
3. Invokes the decompress_kernel( ) function to decompress the kernel image. The 
"Uncompressing Linux . . . " message is displayed first. After the kernel image has 
been decompressed, the "O K, booting the kernel." message is shown. If the kernel 
image was loaded low, the decompressed kernel is placed at physical address 
0x00100000. Otherwise, if the kernel image was loaded high, the decompressed 
kernel is placed in a temporary buffer located after the compressed image. The 
decompressed image is then moved into its final position, which starts at physical 
address 0x00100000. 
 
4. Jumps to physical address 0x00100000. The decompressed kernel image begins 
with another startup_32( ) function included in the arch/i386/kernel/head.S file. 
Using the same name for both the functions does not create any problems (besides 
confusing our readers), since both functions are executed by jumping to their initial 
physical addresses.  
 
The second startup_32( ) function essentially sets up the execution environment for 
the first Linux process (process 0). The function performs the following 
operations: 
 
1. Initializes the segmentation registers with their final values. 



 
2. Sets up the Kernel Mode stack for process. 
 
3. Invokes setup_idt( ) to fill the IDT with null interrupt handlers. 
 
4. Puts the system parameters obtained from the BIOS and the parameters passed 
to the operating system into the first page frame. 
 
5. Identifies the model of the processor. 
 
6. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables. 
 
7. Jumps to the start_kernel( ) function. 
 
A.5 Modern Age: The start_kernel( ) Function 
 
The start_kernel( ) function completes the initialization of the Linux kernel. Nearly 
every kernel component is initialized by this function; we mention just a few of 
them: 
 
• The page tables are initialized by invoking the paging_init( ) function. 
• The page descriptors are initialized by the mem_init( ) function  
• The final initialization of the IDT is performed by invoking trap_init( ) and 
init_IRQ( ). 
• The slab allocator is initialized by the kmem_cache_init( ) and 
kmem_cache_sizes_init( ) functions. 
• The system date and time are initialized by the time_init( ) function (see 
• The kernel thread for process 1 is created by invoking the kernel_thread( ) 
function. In turn, this kernel thread creates the other kernel threads and executes 
the /sbin/init program.  
 
 
            
 Device Management(Managing I/O Devices) 
 
The aim of this section is to illustrate the overall organization of device drivers in 
Linux. 
 
I/O ARCHITECTURE 
 



In order to make a computer work properly, data paths must be provided that let 
information flow between CPU(s), RAM, and the score of I/O devices that can be 
connected nowadays to a personal computer. These data paths, which are denoted 
collectively as the bus, act as the primary communication channel inside the 
computer. Several types of buses, such as the ISA, EISA, PCI, and MCA, are 
currently in use. In this section we'll discuss the functional characteristics common 
to all PC architectures, without giving details about a specific bus type. 
In fact, what is commonly denoted as bus consists of three specialized buses: 
 
Data bus 
 
A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data 
bus. 
 
Address bus 
 
A group of lines that transmits an address in parallel. The Pentium has a 32-bit-
wide address bus. 
 
Control bus 
 
A group of lines that transmits control information to the connected circuits. The 
Pentium makes use of control lines to specify, for instance, whether the bus is used 
to allow data transfers between a processor and the RAM or alternatively between 
a processor and an I/O device. Control lines also determine whether a read or a 
write transfer must be performed. When the bus connects the CPU to an I/O 
device, it is called an I/O bus. In this case, Intel 80x86 microprocessors use 16 out 
of the 32 address lines to address I/O devices and 8, 16, or 32 out of the 64 data 
lines to transfer data. The I/O bus, in turn, is connected to each I/O Understanding 
the Linux Kernel 344 device by means of a hierarchy of hardware components 
including up to three elements: I/O ports, interfaces, and device controllers.  
architecture. 
 
 
I/O Ports 
 
Each device connected to the I/O bus has its own set of I/O addresses, which are 
usually called I/O ports. In the IBM PC architecture, the I/O address space 
provides up to 65,536 8-bit 



I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, 
which must start on an even address. Similarly, two consecutive 16-bit ports may 
be regarded as a single 32-bit port, which must start on an address that is a multiple 
of 4. Four special assembly language instructions called in, ins, out, and outs allow 
the CPU to read from and write into an I/O port. While executing one of these 
instructions, the CPU makes use of the address bus to select the required I/O port 
and of the data bus to transfer data between a CPU register and the port. I/O ports 
may also be mapped into addresses of the physical address space: the processor is 
then able to communicate with an I/O device by issuing assembly language 
instructions that operate directly on memory (for instance, mov, and, or, and so 
on). Modern hardware devices tend to prefer mapped I/O, since it is faster and can 
be combined with DMA. 
 
An important objective for system designers is to offer a unified approach to I/O 
programming without sacrificing performance. Toward that end, the I/O ports of 
each device are structured into a set of specialized registers. The CPU writes into 
the control register the commands to be sent to the device and reads from the 
status register a value that represents the internal state of the device. The CPU also 
fetches data from the device by reading bytes from the input register and pushes 
data to the device by writing bytes into the output register. 
 
Associating Files with I/O Devices 
 
UNIX-like operating systems are based on the notion of a file, which is just an 
information container structured as a sequence of bytes. According to this 
approach, I/O devices are treated as files; thus, the same system calls used to 
interact with regular files on disk can be used to directly interact with I/O devices. 
As an example, the same write( ) system call may be used to write data into a 
regular file, or to send it to a printer by writing to the /dev/lp0 device file. Let's 
now examine in more detail how this schema is carried out. 
 
 Device Files 
 
Device files are used to represent most of the I/O devices supported by Linux. 
Besides its name, each device file has three main attributes: 
 
Type 
 
Either block or character. 
 



Major number 
 
A number ranging from 1 to 255 that identifies the device type. Usually, all device 
files having the same major number and the same type share the same set of file 
operations, since they are handled by the same device driver.  
 
 
Minor number 
 
A number that identifies a specific device among a group of devices that share the 
same major number. The mknod( ) system call is used to create device files. It 
receives the name of the device file, its type, and the major and minor numbers as 
parameters. The last two parameters are merged in a 16-bit dev_t number: the eight 
most significant bits identify the major number, while the remaining ones identify 
the minor number. The MAJOR and MINOR macros extract the two values from 
the 16-bit number, while the MKDEV macro merges a major and minor number 
into a 16-bit number. Actually, dev_t is the data type specifically used by 
application programs; the kernel uses the kdev_t data type. In Linux 2.2 both types 
reduce to an unsigned short integer, but kdev_t will become a complete device file 
descriptor in some future Linux version. 
Device files are usually included in the /dev directory. The following illustrates the 
attributes of some device files. Notice how the same major number may be used to 
identify both a character and a block device. 
 
Name Type Major Minor Description 
 
/dev/fd0 block 2 0 Floppy disk 
/dev/hda block 3 0 First IDE disk 
/dev/hda2 block 3 2 Second primary partition of first IDE disk 
/dev/hdb block 3 64 Second IDE disk 
/dev/hdb3 block 3 67 Third primary partition of second IDE disk 
/dev/ttyp0 char 3 0 Terminal 
 


