
Repeatable Security Hardening and Monitoring

New features in the Solaris 10 OS make it easier than ever to minimize and harden

a system. The Reduced Networking Metacluster install option creates a minimized

Solaris OS image, ready for administrators to add functionality and services in

direct support of their system's purpose.

Mandatory Access Control and Labeling

If your system requirements include privacy, increased accountability, and reduced

risk of security violations, then Solaris Trusted Extensions is for you. A standard

part of Solaris, true multi-level security is available for the first time in a

commercial-grade operating system that runs all your existing applications and is

supported on over 1,200 x64/x86 and SPARC platforms.

 WEAKNESS AND STRENGHT

A security weakness in Solaris Trusted Extensions Policy configuration may allow

a remote unprivileged user who has authorized or unauthorized access to the X

server, to leverage an additional vulnerability which could lead to arbitrary code

execution as a local privileged or unprivileged user.

Sun has acknowledged a weakness in Pidgin on Solaris, which can be exploited by

malicious people to cause a DoS (Denial of Service).

 CONCLUSION

The development of the Solaris OS demonstrates Sun Microsystems' ability to be

on the cutting edge of the computing world without losing touch with the current

computing environment. Sun regularly releases new versions of Solaris

incorporating the latest development in computer technology, yet also included

more cross-platform compatibility and incorporating the advances of other

systems. The OpenSolaris project is the ultimate display of these twin strengths-

Sun has tapped into the creative energy of developers across the world and receives

instant feedback about what their audience wants and needs. If all software

companies took a lesson from Sun, imagine how exciting and responsive the

industry could be.

CHAPTER 4 : MS-DOS

1.0 INTRODUCTION

MS DOS is an acronym that stands for MicroSoft Disk Operating System. It is
often referred to as DOS. It is an old operating system for x86-based personal
computers, purchased by Microsoft that manages everything on your computer:
hardware, memory, files. It is an operating system that existed prior to Windows.
MS-DOS was the most commonly used member of the DOS family of operating
systems, and was the main operating system for personal computers during the
1980s up to mid 1990s. It was preceded by M-DOS (also called MIDAS), designed
and copyrighted by Microsoft in 1979. MSDOS was written for the Intel 8086
family of microprocessors, particularly the IBM PC and compatibles. It was
gradually replaced on consumer desktop computers by operating systems offering
a graphical user interface (GUI), in particular by various generations of the
Microsoft Windows operating system. MS-DOS developed out of QDOS (Quick
and Dirty Operating System), also known as 86-DOS. DOS, as with any operating
system, controls computer activity. It manages operations such as data flow,
display, data entry amongst other various elements that make up a system.
The role of DOS is to interpret commands that the user enters via the keyboard.
These commands allow the following tasks to be executed:
� file and folder management
� disk upgrades
� hardware configuration
� memory optimization
� program execution

These commands are typed after the prompt, in the case of MS-DOS (Microsoft
DOS, the most well known): the drive letter followed by a backslash, for example:
A:\ or C:\. And after them, the enter key. The files that make up DOS involves:
IO.SYS : This is a program to handle input/output to your peripheral devices. It
stays in memory when you run applications programs

MSDOS.SYS: This is a program for application programs to use. It contains
special subprograms to make many commonly needed operations easy for
programmers. COMMAND.COM : This program accepts the commands you enter
and runs the right program. CONFIG.SYS: Configures the hardware environment
Mouse , Printer, Keyboard , Country codes (time, date, currency),other devices and
system commands AUTOEXEC.BAT: Programs/commands to be run at system

start Batch file (automatically executing set of programs/commands) IO.SYS and
MSDOS are loaded into the PC memory by a special program called a boot record
each time you start up DOS . The command used to initialize new disks with
DOS,FORMAT/S puts this on the disk along with IO.SYS and MSDOS.SYS

2.0 HISTORY

MS-DOS (Microsoft Disk Operating System) is a single-user, single-tasking
computer operating system that uses a command line interface. In spite of its very
small size and relative simplicity, it is one of the most successful operating systems
that have been developed to date.

A Quick and Dirty History

When IBM launched its revolutionary personal computer, the IBM PC, in August
1981, it came complete with a 16-bit operating system from Microsoft, MS-DOS
1.0. This was Microsoft's first operating system, and it also became the first widely
used operating system for the IBM PC and its clones. MS-DOS 1.0 was actually a
renamed version of QDOS (Quick and Dirty Operating System), which Microsoft
bought from a Seattle company, appropriately named Seattle Computer Products,
in July 1981. QDOS had been developed as a clone of the CP/M eight-bit operating
system in order to provide compatibility with the popular business applications of
the day such as WordStar and dBase. CP/M (Control Program for
Microcomputers) was written by Gary Kildall of Digital Research several years
earlier and had become the first operating system for microcomputers in general
use.

QDOS was written by Tim Paterson, a Seattle Computer Products employee, for
the new Intel 16-bit 8086 CPU (central processing unit), and the first version was
shipped in August, 1980. Although it was completed in a mere six weeks, QDOS
was sufficiently different from CP/M to be considered legal. Paterson was later
hired by Microsoft. Microsoft initially kept the IBM deal a secret from Seattle
Computer Products. And in what was to become another extremely fortuitous
move, Bill Gates, the not uncontroversial cofounder of Microsoft, persuaded IBM
to let his company retain marketing rights for the operating system separately from
the IBM PC project. Microsoft renamed it PC-DOS (the IBM version) and MS-
DOS (the Microsoft version). The two versions were initially nearly identical, but
they eventually diverged.

The acronym DOS was not new even then. It had originally been used by IBM in
the 1960sin the name of an operating system (i.e., DOS/360) for its System/360
computer. At that time the use of disks for storing the operating system and data
was considered cutting edge technology. Until its acquisition of QDOS, Microsoft
had been mainly a vendor of computer programming languages. Gates and co-
founder Paul Allen had written Microsoft BASIC and were selling it on disks and
tape mostly to PC hobbyists.

MS-DOS soared in popularity with the surge in the PC market. Revenue from its
sales fuelled Microsoft's phenomenal growth, and MS-DOS was the key to
company's rapid emergence as the dominant firm in the software industry. This
product continued to be the largest single contributor to Microsoft's income well
after it had become more famous for Windows. Subsequent versions of MS-DOS
featured improved performance and additional functions, not a few of which were
copied from other operating systems. For example, version 1.25, released in 1982,
added support for double-sided disks, thereby eliminating the need to manually
turn the disks over to access the reverse side.

Version 2.0, released the next year, added support for directories, for IBM's then
huge 10MB hard disk drive (HDD) and for 360KB, 5.25-inch floppy disks. This
was followed by version 2.11 later in the same year, which added support for
foreign and extended characters. Version 3.0 launched in 1984, added support for
1.2MB floppy disks and 32MB HDDs. This was soon followed by version 3.1,
which added support for networks. Additions and improvements in subsequent
versions included support for multiple HDD partitions, for disk compression and
for larger partitions as well as an improved diskchecking utility, enhanced memory
management, a disk defragmenter and an improved text editor.

The final major version was 7.0, which was released in 1995 as part of Microsoft
Windows 95. It featured close integration with that operating system, including
support for long filenames and the removal of numerous utilities, some of which
were on the Windows 95 CDROM. It was revised in 1997 with version 7.1, which
added support for the FAT32 file system on HDDs.

3.0 OPERATING SYSTEM FUNCTIONS

3.1 SCHEDULING
Scheduling is a key concept in computer multitasking, multiprocessing operating
system and real-time operating system designs. Scheduling refers to the way
processes are assigned to run on the available CPUs, since there are typically many

more processes running than there are available CPUs. This assignment is carried
out by software’s known as a scheduler and dispatcher.
Objectives of a scheduler

� CPU utilization - to keep the CPU as busy as possible.
� Throughput - number of processes that complete their execution per time unit.
� Turnaround - total time between submission of a process and its completion.
� Waiting time - amount of time a process has been waiting in the ready queue.
� Response time - amount of time it takes from when a request was submitted ntil
the first response is produced.
� Fairness - Equal CPU time to each thread.

But MS-DOS is non-multitasking, and as such did not feature a scheduler. MS-
DOS was not designed to be a multi-user or multitasking operating system, but
many attempts were made to retrofit these capabilities. Since it does not perform
scheduling functions, when you run a sub process synchronously on MS-DOS,
make sure the program terminates and does not try to read keyboard input. If the
program does not terminate on its own, you will be unable to terminate it, because
MS-DOS provides no general way to terminate a process. Pressing “ctrl C” or `C-
<BREAK>' might
sometimes help in these cases.
Group C Page 6

3.2 MEMORY MANAGEMENT

MS-DOS Memory Management Functions

� Provide students with a brief overview of memory management in the MS-DOS
operating system. Mention that to run a second job, the user must close or pause
the first file before opening the second.

� Point out that the Memory Manager uses a first-fit memory allocation scheme in
early DOS versions because it is the most efficient strategy in a single-user
environment.

� Discuss briefly the two forms of main memory, ROM and RAM. MS-DOS
provides three memory management functions- allocate, deallocate, and resize
(modify). For most programs, these three memory allocation calls are not
used.When DOS executes a program, it gives all of the available memory, from the
start of that program to the end of RAM, to the executing process. Any attempt to

allocate memory without first giving unused memory back to the system will
produce an “insufficient memory” error.

ALLOCATE MEMORY

Function (ah): 48h
Entry parameters: bx- Requested block size (in paragraphs)
Exit parameters: If no error (carry clear):
ax:0 points at allocated memory block
If an error (carry set):
bx- maximum possible allocation size
ax- error code (7 or 8)
This call is used to allocate a block of memory. On entry into DOS, bx contains the
size of the requested block in paragraphs (groups of 16 bytes). On exit, assuming
no error, the ax register contains the segment address of the start of the allocated
block. If an error occurs, the block is not allocated and the ax register is returned
containing the error code.
If the allocation request failed due to insufficient memory, the bx register is
returned containing the maximum number of paragraphs actually available.
Group C Page 7

DEALLOCATE MEMORY

Function (ah): 49h
Entry parameters: es:0- Segment address of block to be deallocated
Exit parameters: If the carry is set, ax contains the error code (7,9)
This call is used to deallocate memory allocated via function 48h above. The es
register cannot contain an arbitrary memory address. It must contain a value
returned by the allocate memory function. You cannot use this call to deallocate a
portion of an allocated block. The modify allocation function is used for that
operation.

MODIFY MEMORY ALLOCATION

Function (ah): 4Ah
Entry parameters: es:0- address of block to modify allocation size
bx- size of new block
Exit parameters: If the carry is set, then
ax contains the error code 7, 8, or 9
bx contains the maximum size possible (if error 8)

This call is used to change the size of an allocated block. On entry, es must contain
the segment address of the allocated block returned by the memory allocation
function. Bx must contain the new size of this block in paragraphs. While you can
almost always reduce the size of a block, you cannot normally increase the size of
a block if other blocks have been allocated after the block being modified. Keep
this in mind when using this function.
Group C Page 8

3.3 FILE SYSTEM

Before we go any further, it would be a good idea to look at the DOS file system.
The file system lets us store information in named files. You can call a file
anything you like which might help you remember what it contains as long as you
follow certain basic rules:

1. File names can be up to 8 characters long. You can use letters and digits but only
a few punctuation marks (! $ % # ~ @ - () _ { }). You can't exceed 8 characters or
use spaces or characters like * or ? or +. Names are case-insensitive, i.e. it doesn't
matter whether you use capitals or lowercase letters; "A" and "a" are treated as the
same thing.
2. File names can also have an extension of up to three characters which describes
the type of file. There are some standard extensions, but you don't have to use
them.
Examples include COM and EXE for executable programs, TXT for text files,
BAK
for backup copies of files, or CPP for C++ program files. The extension is
separated by a dot from the rest of the filename.
For example, a file called FILENAME.EXT has an 8-character name
(FILENAME) followed by a three-character extension (.EXT). You could also
refer to it as filename.txt since case doesn't matter, but I'm going to use names in
capitals for emphasis throughout this document. Files are stored in directories; a
directory is actually just a special type of file which holds a list of the files within
it. Since a directory is a file, you can have directories within directories. Directory
names also follow the same naming rules as other files, but although they can have
an extension they aren't normally given one (just an 8-character name). The system
keeps track of your current directory, and if you just refer to a file using a name
like FILENAME.EXT it's assumed you mean a file of that name in the current
directory. You can specify a pathname to identify a file which includes the
directory name as well; the directory is separated from the rest of the name by a
backslash ("\"). For example, a file called LETTER1.TXT in a directory called

LETTERS can be referred to as LETTERS\LETTER1.TXT (assuming that the
current directory contains the LETTERS directory as a subdirectory). If LETTERS
contains a subdirectory called PERSONAL, which in turn contains a file called
DEARJOHN.TXT, you would refer to this file as Group C Page 9

LETTERS\PERSONAL\DEARJOHN.TXT (i.e. look in the LETTERS directory
for PERSONAL\DEARJOHN.TXT, which in turn involves looking in the
PERSONAL subdirectory for the file DEARJOHN.TXT).
Every disk has a root directory which is the main directory that everything else is
part of. The root directory is called "\", so you can use absolute pathnames which
don't depend on what your current directory is. A name like
\LETTERS\LETTER1.TXT always refers to the same file regardless of which
directory you happen to be working in at the time; the "\" at the beginning means
"start looking in the root directory", so \LETTERS\LETTER1.TXT means "look in
the root directory of the disk for a subdirectory called LETTERS, then look in this
subdirectory for a file called LETTER1.TXT". Leaving out the "\" at the beginning
makes this a relative pathname whose meaning is relative to the current directory
at the time. If you want to refer to a file on another disk, you can put a letter
identifying the disk at the beginning of the name separated from the rest of the
name by a colon (":"). For example,

A:\LETTER1.TXT refers to a file called LETTER1.TXT in the root directory of
drive A. DOS keeps track of the current directory on each disk separately, so a
relative pathname like A:LETTER1.TXT refers to a file called LETTER1.TXT in
the currently-selected directory on drive A. For convenience, all directories (except
root directories) contain two special names: "." refers to the directory itself, and ".."
refers to the parent directory (i.e. the directory that contains this one). For example,
if the current directory is \LETTERS\PERSONAL, the name ".." refers to the
directory \LETTERS, "..\BUSINESS" refers to \LETTERS\BUSINESS, and "..\.."
refers to the root directory "\".
Group C Page 10

3.4 PROCESS MANAGEMENT

MS-DOS boot process

1. The BIOS, having completed its test and setup functions, loads the boot code
found in the master boot record and then transfers control of the system to it. At
that point, the master boot record code is executed. If the boot device is a floppy
disk, the process skips to step 7 below.

2. The next step in the process is the master boot code examining the master
partition table. It first must determine if there is an extended DOS partition, then it
must determine if there is a bootable partition specified in the partition table.

3. If the master boot code locates an extended partition on the disk, it loads the
extended partition table that describes the first logical volume in the extended
partition. This extended partition table is examined to see if it points to another
extended partition table. If it does, this second table is examined for information
about the second logical volume in the extended partition. Logical volumes in the
extended partition have their extended partition table chained together one to the
next. This process continues until all of the extended partitions have been loaded
and recognized by the system.

4. Once the extended partition information (if any) has been loaded, the boot code
attempts to start the primary partition that is marked active, referred to as the boot
partition. If no boot partitions are marked active, then the boot process will
terminate with an error. The error message is often the same as that which occurs if
the BIOS could not locate a boot device, generally shown on screen as "No boot
device", but also can show up as "NO ROM BASIC - SYSTEM HALTED". If
there is a primary partition marked active and there is an installed operating
system, the boot code will boot it. The rest of the steps presume this example is of
an MS- DOS primary partition.
Group C Page 11

5. At this stage, the master or volume boot sector is loaded into memory and tested,
and the boot code that it contains is given control of the remainder of the boot
process. 6. The boot code examines the disk structures to ensure that everything is
correct. If not, the boot process will end in an error here.

7. During the next step, the boot code searches the root directory of the device
being booted for the operating system files that contain the operating system. For
MS-DOS, these are the files "IO.SYS", "MSDOS.SYS" and "COMMAND.COM".

8. If no operating system files are found, the boot program will display an error
message similar to "Non-system disk or disk error - Replace and press any key
when ready". Keep in mind that this message does not means that the system was
never booted. It means that the BIOS examined the floppy disk for example and
just rejected it because it couldn't boot an operating system. The volume boot code

was indeed loaded and executed, as that is what posts the message when it can't
find the operating system files.

9. In the final stages of the boot process, presuming that the operating system files
are found, the boot program will load those operating system files into memory
and transfer control to them. In MS-DOS, the first is IO.SYS and its code is
executed.

10. SYS will then execute MSDOS.SYS. Then the more complete operating
system code loads and initializes the rest of the operating system structures
beginning with the command interpreter COMMAND.COM and then the
execution of the CONFIG.SYS and AUTOEXEC.BAT files. At this point the
operating system code itself has control of the computer.

MS-DOS Process Management

This relates to the Operating System’s activity of managing the processor in the
system, i.e. allocating and de-allocating of the processor to the process. The
Operating System decides. Group C Page 12
the same based on the priority of the process depending if there exists any and
certain predefined algorithms. Although MS-DOS is a single tasking operating
system, this does not mean there can only be one program at a time in memory.
However we can still load several programs into memory at one time under DOS.
The only catch is that DOS only provides the ability for them to run one at a time
in a very specific fashion. Unless the processes are cooperating, their execution
profile follows a very strict pattern. That’s why Dos exhibit Serial Multi tasking.
Users often wish to perform more than one activity at a time (load a remote file
while editing a program) and uni programming does not allow this. So DOS put in
things like memory resident programs that invoked asynchronously, but still have
separation problems. One key problem with DOS is that there is no memory
protection - one program may write the memory of another program, causing weird
bugs.

Child Processes in DOS

In Dos we have one process and one thread.

When a DOS application is running, it can load and executing some other
programs using the DOS EXEC function. Under normal circumstances, when an
application (the parent) runs a second program (the child), the child process

executes to completion and then returns to the parent. This is very much like a
procedure call, except it is a little more difficult to pass parameters between the
two. Group C Page 13

3.5 INPUTS/OUTPUT IN MSDOS

The core of MS-DOS is a device-independent input/output (I/O) handler,
represented on a system disk by the hidden file MSDOS.SYS. It accepts requests
from application programs to do high-level I/O, such as sequential or random
access of named disk files, or communication with character devices such as the
console. The handler processes these requests and converts them to a very low
level form that can be handled by the I/O system. Because MSDOS.SYS is
hardware independent, it is nearly identical in all MS-DOS versions provided by
manufacturers with their equipment. The I/O system is totally device dependent
and is represented on the disk by the hidden file IO.SYS. It is normally written by
hardware manufacturers (who know their equipment best, anyway) with the
notable exception of IBM, whose I/O system was written to IBM's specifications
by Microsoft. The tasks required of the I/O system, such as outputting a single
byte to a character device or reading a contiguous group of physical disk sectors
into memory, are as simple as possible.

Departing From the Windows for MS-DOS I/O Model

The I/O system used in Windows for MS-DOS is based on, and limited by,
capabilities of the underlying MS-DOS operating system. The device drivers at the
core of this I/O system are commonly:

� Written in assembly language--they're not portable: they can only run on Intel
80x86 family processors.

� Monolithic in design, not layered--similar code for common tasks is repeated in
each device driver for a given class of devices. Monolithic design also makes
mixing and matching different file systems and device drivers impossible.

� Not designed for pre-emptive multitasking use--Windows has to perform many
nasty tricks to allow even non-pre-emptive multitasking with non-multitasking
MS-DOS and its non-multitasking device drivers.

� Incompatible with multiprocessor platforms--MS-DOS is inherently a
singleprocessor OS, so MS-DOS device drivers are utterly incapable of
synchronizing access to shared resources in a multiprocessor situation.
Group C Page 14

3.6 SECURITY

The security syntax set in MSDOS is masked on the command base and the
password identifier which cannot be altered by someone who is not authorized.
Password can be set for some programs starting from MSDOS like QBASIC.
The command – line is not prone to virus. Also it MSDOS cannot be used by
someone who does not know the commands limiting the risk of harming the
system. Group C Page 15

4.0 DESIGN ISSUES

MS-DOS Design Criteria
The primary design requirement of MS-DOS was CP/M-80 translation
compatibility, meaning that, if an 8080 or Z80 program for CP/M were translated
for the 8086 according to Intel's published rules, that program would execute
properly under MS-DOS. Making CP/M-80 translation compatibility a requirement
served to promote rapid development of 8086 software, which, naturally, Seattle
Computer was interested in. There was partial success: those software developers
who chose to translate their CP/M-80 programs found that they did indeed run
under MS-DOS, often on the first try. Unfortunately, many of the software
developers Seattle Computer talked to in the earlier days preferred to simply ignore
MSDOS. Until the IBM Personal Computer was announced, these developers felt
that CP/M-86 would be the operating system of 8086/8088 computers. Other
concerns crucial to the design of MS-DOS were speed and efficiency. Efficiency
primarily means making as much disk space as possible available for storing data
by minimizing waste and overhead. The problem of speed was attacked three
ways: by minimizing the number of disk transfers, making the needed disk
transfers happen as quickly as possible, and reducing the DOS's "compute time,"
considered overhead by an application program. The entire file structure and disk
interface were developed for the greatest speed and efficiency. The last design
requirement was that MS-DOS be written in assembly language. While this
characteristic does help meet the need for speed and efficiency, the reason for
including it is much more basic. The only 8086 software-development tools
available to Seattle Computer at that time were an assembler that ran on the Z80
under CP/M and a monitor/debugger that fit into a 2K-byte EPROM (erasable

programmable read-only memory). Both of these tools had been developed in
house. Group C Page 16

5.0 IMPLEMENTATION

MSDOS is a single-user operating system. MS-DOS employs a command line
interface and a batch scripting facility via its command interpreter, command.com
(all operations to be carried out must be written through commands); without the
knowledge of those commands, the user cannot execute a job. Despite its
command-line interface, it is easy to learn. The commands of MSDOS are not case
sensitive. MSDOS is supported and embedded in other operating system like
Microsoft windows, MacOs; it can be launched in windows by:

(i) Start -> All programs -> accessories -> command prompt or
(ii) Start -> run -> type cmd -> ok
The MSDOS contains five files (IO.SYS, MSDOS.SYS, COMMAND.COM,
CONFIG.SYS and AUTOEXEC.BAT). The commands in MSDOS can be
categorized in two forms:
INTERNAL and EXTERNAL commands.
Group C Page 17

Internal commands are executed without loading a separate program file.
Command.com is responsible for the execution of internal commands and the
special batch commands. Internal commands are part of the command processor
always available to be used. External command exists as executable files handled
by separate programs from the DOS diskette. Each program is a member of the
.COM or .EXE family. An external command can only be used when the disk
containing the program is in drive. They can be used for peripheral devices like
printer. A file’s full name is called FILESPEC. The FILESPEC for a disk file has
four parts: drive name, directory name, file name and extension. Characters like.
“ / \ [] : | < > + = ; , cannot be used in naming files because they mean other things
in MSDOS. When you start up DOS, the current directory is automatically the root
directory. The CD will change the current directory. Other folders in the root
directory are called sub – directories. A file in any directory can be accessed by
typing:

cd ROOT DIRECTORY\SUB-DIRECTORY (Level 1)\ SUB-DIRECTORY
(level2)...\filename.ext. CLASSIFYING MS-DOS COMMANDS

Either internal or external command will be specified for each command of
MSDOS in this text. MS-DOS commands fall roughly into three categories;
Group C Page 18

1. Environment Commands: These report on or affect the operating system
environment. Examples are CLS (clear screen), TIME, DATE, VER (display MS-
DOS version number), and HELP.

� BREAK (internal): Used from the DOS prompt or in a batch file or in the
CONFIG.SYS file to set (or display) whether or not DOS should check for a Ctrl +
Break key combination.
BREAK =on|off

� CLS (internal) – clears screen: Clears (erases) the screen. CLS

� DATE AND TIME (internal): Displays and/or sets the system date. DATE mm-
dd-yy or DATE

� GRAPHICS (external): Provides a way to print contents of a graphics screen
display.

GRAPHICS [printer type][profile] [/B][/R][/LCD][/PB:(id)] [/C][/F][/P(port)]

� MODE (external): Sets mode of operation for devices or communications.
MODE n
MODE LPT#[:][n][,][m][,][P][retry]
MODE [n],m[,T]
MODE (displaytype,linetotal)
MODE COMn[:]baud[,][parity][,][databits][,][stopbits][,][retry]
MODE LPT#[:]=COMn [retry]
MODE CON[RATE=(number)][DELAY=(number)]
MODE (device) CODEPAGE PREPARE=(codepage) [d:][path]filename
MODE (device) CODEPAGE PREPARE=(codepage list) [d:][path]filename
MODE (device) CODEPAGE SELECT=(codepage)
MODE (device) CODEPAGE [/STATUS]
MODE (device) CODEPAGE REFRESH

� VER (internal): Displays the DOS version number. VER

� SELECT (external): Formats a disk and installs country-specific information
and keyboard codes (starting with DOS Version 6, this command is no longer
available).

SELECT [d:] [d:][path] [country code][keyboard code]

2. Directory and File Commands: These manipulate files. Examples are COPY,
DEL (delete), TYPE (display file to screen) and, DIR (directory - or list all files in
current directory). It can be further divided into three (3);

(a) Commands for disk maintenance

� BACKUP (external): Makes a backup copy of one or more files. (In DOS
Version 6, this program is stored on the DOS supplemental disk.)
Group C Page 19

BACKUP d:[path][filename] d:[/S][/M][/A][/F:(size)] [/P][/D:date] [/T:time]
[/L:[path]filename]

� RESTORE (external): Restores to standard disk storage format files previously
stored using the BACKUP command.

RESTORE d: [d:][path]filename [/P][/S][/B:mm-dd-yy] [/A:mm-ddyy][/
E:hh:mm:ss] [/L:hh:mm:ss] [/M][/N][/D]

� RECOVER (external): Resolves sector problems on a file or a disk. (Beginning
with DOS Version 6, RECOVER is no longer available).

RECOVER [d:][path]filename or RECOVER d:

� VERIFY (internal): Turns on the verify mode; the program checks all copying
operations to assure that files are copied correctly.
VERIFY on|off

� FORMAT (external): Formats a disk to accept DOS files. FORMAT
d:[/1][/4][/8][/F:(size)] [/N:(sectors)] [/T:(tracks)][/B|/S][/C][/V:(label)]
[/Q][/U][/V]

� SYS (external): Transfers the operating system files to another disk.
SYS [source] d:

� CHKDSK (external): Checks a disk and provides a file and memory status
report.
CHKDSK [d:][path][filename] [/F][/V]

� DISKCOPY (external): Makes an exact copy of a diskette.
DISKCOPY [d:] [d:][/1][/V][/M]

� DISKCOMP (external): Compares the contents of two diskettes.
DISKCOMP [d:] [d:][/1][/8]

� LABEL (external): Creates or changes or deletes a volume label for a disk.
LABEL [d:][volume label]

� VOL (internal): Displays a disk's volume label.
VOL [d:] (b) Commands for directory control

� DIR (internal): Displays directory of files and directories stored on disk.
DIR [d:][path][filename] [/A:(attributes)] [/O:(order)]
[/B][/C][/CH][/L][/S][/P][/W]

� ASSIGN (external): Redirects disk drive requests to a different drive.
ASSIGN A:=B: [...] /sta

� MKDIR (internal): Creates a new subdirectory.
MKDIR (MD) [d:]path
Group C Page 20

� CHDIR (internal): Displays working (current) directory and/or changes to a
different directory.
CHDIR (CD) [d:]path or CHDIR (CD)[..]

� RMDIR (internal): Removes a subdirectory.
RMDIR (RD) [d:]path

� TREE (external): Displays directory paths and (optionally) files in each
subdirectory.
TREE [d:][path] [/A][/F]

� PATH (external): Sets or displays directories that will be searched for programs
not in the current directory.
PATH; or PATH [d:]path[;][d:]path[...]

� JOIN (external): Allows access to the directory structure and files of a drive
through a directory on a different drive.
JOIN d: [d:path] or JOIN d: [/D]

� SUBST (external): Substitutes a virtual drive letter for a path designation.
SUBST d: d:path or SUBST d: /D
(c) Commands for file control:

� COPY (internal): copies source file to target file and appends file.
COPY [d:][path]source [d:][path][target] [/V]
Or COPY [d:][path]filename+[d:][path]filename[...][d:][path][filename] [/V]

� COMP (external): Compares two groups of files to find information that does
not match. COMP [d:][path][filename] [d:][path][filename]
[/A][/C][/D][/L][/N:(number)]

� RNAME (internal): Changes the filename under which a file is stored.
RENAME (REN) [d:][path]filename [d:][path]filename

� ERASE/DELETE (internal): Deletes (erases) files from disk.
DEL (ERASE) [d:][path]filename [/P]

� TYPE (internal): Displays the contents of a file.
[d:][path]filename

� PRINT (external): Queues and prints data files.
PRINT [/B:(buffersize)] [/D:(device)] [/M:(maxtick)] [/Q:(value]
[/S:(timeslice)] [/U:(busytick)] [/C][/P][/T] [d:][path][filename] [...]

