
Windows CE

Windows CE (officially known as Windows Embedded), is an edition of Windows
that runs on minimalistic computers, like satellite navigation systems, and
uncommonly mobile phones. Windows Embedded runs as CE, rather than NT,
which is why it should not be mistaken for Windows XP Embedded, which is NT.
Windows CE was used in the Sega Dreamcast along with Sega's own proprietary
OS for the console.

Windows Lifecycle Policy

Microsoft has stopped releasing updates and hotfixes for many old Windows
operating systems, including all versions of Windows 9x, and earlier versions of
Windows NT. Windows versions prior to XP are no longer supported, with the
exception of Windows 2000, which is currently in the Extended Support Period,
that will end on July 13, 2010. No new updates are created for unsupported
versions of Windows.

 DESIGN ISSUES

WINDOWS RESOURCE MANAGEMENT
This has do with the management of all the resources in the component of the
Operating System e. g the Memory, the Central Processing Unit, I/O devices and
other components.

 PROCESS MANAGEMENT

Processor

A circuit designed to automatically perform lists of logical and arithmetic
operations.
Unlike microprocessors, processors may be designed from discrete components
rather than be a monolithic integrated circuit.

A process is running program containing one or more threads. A process
encapsulates the protected memory and environment for its threads.

Processes and Threads

In addition to being a preemptive multitasking operating system, Windows NT is
also multithreaded, meaning that more than one thread of execution (or thread) can
execute in a single task at once.

A process comprises:

 A private memory address space in which the process's code and data are
stored.

 An access token against which Windows NT makes security checks.

 System resources such as files and windows (represented as object handles).

 At least one thread to execute the code.

A thread comprises:

 A processor state including the current instruction pointer.

 A stack for use when running in user mode.

 A stack for use when running in kernel mode.

Since processes (not threads) own the access token, system resource handles, and
address space, threads do NOT have their own address spaces nor do they have
their own access token or system resource handles. Therefore, all of the threads in
a process SHARE the same memory, access token, and system resources
(including quota limits) on a "per-process" rather than a "per-thread" basis. In a
multithreaded program, the programmer is responsible for making sure that the
different threads don't interfere with each other by using these shared resources in a
way that conflicts with another thread's use of the same resource. (As you might
suspect, this can get a little tricky.)

Why Use Multithreading?

Multithreading provides a way to have more than one thread executing in the same
process while allowing every thread access to the same memory address space.
This allows very fast communication among threads. Threads are also easier to
create than processes since they don't require a separate address space.

Inside Windows NT, processes and threads are represented as objects that are
created, maintained, and destroyed by the Process Manager. These Process
Manager process and thread objects contain simpler kernel process and thread
objects.

Some typical examples of the use of multiple threads are using a background
thread to print a document in a word processor and to recalculate a spreadsheet.
When a new thread is created to do these tasks, the main thread can continue
responding to user input. A single-threaded application can't respond to user input
until it's done printing or recalculating or whatever.

On a uniprocessor platform, the use of multiple threads allows a user to continue
using a program even while another thread is doing some lengthy procedure. But
only one thread executes at a time.

On a multiprocessor platform, more than one processor may be running different
threads in the same process. This has the potential for very significantly speeding
up the execution of your program.

Sharing A Single Address Space--Synchronizing Access To Data

Running each process in its own address space had the advantage of reliability
since no process can modify another process's memory. However, all of a
process's threads run in the same address space and have unrestricted access
to all of the same resources, including memory. While this makes it easy to
share data among threads, it also makes it easy for threads to step on each other. As
mentioned before, multithreaded programs must be specially programmed to
ensure that threads don't step on each other.

A section of code in Windows operating system that modifies data structures
shared by multiple threads is called a critical section. It is important than when a
critical section is running in one thread that no other thread be able to access that
data structure. Synchronization is necessary to ensure that only one thread can
execute in a critical section at a time. This synchronization is accomplished
through the use of some type of Windows synchronization object. Programs use
Windows synchronization objects rather than writing their own synchronization
both to save coding effort and for efficiency: when you wait on a Windows
synchronization object, you do NOT use any CPU time testing the object to see
when it's ready.

Windows provides a variety of different types of synchronization objects that
programs can use to coordinate threads' access to shared data structures.
Synchronization objects remember their states and can be set and tested in one
uninterruptable step. They also cause the thread to be suspended while waiting on
an object and to automatically restart when the other thread signals that it's done.

During the initialization of a program, the program creates a synchronization
object for each data structure or object that will be shared among threads.

EVERY critical section will have the following structure:

1. Wait on the synchronization object before accessing the data structure. The
Windows waiting API insures that your thread is suspended until the
synchronization object becomes unlocked. As soon as the synchronization
object becomes unlocked, Windows sets the synchronization object to
"locked" and restarts your thread.

2. Access the data structure. (This is the critical section.)
3. Unlock the synchronization object so that the data can be accessed by other

threads.

The first step is critical because if it's omitted then any thread can access the data
structure while you're accessing. The last step is also critical--it it's omitted, then
no thread will be able to access the data even after you're done.

Using this technique on every critical section insures that only one thread can
access the data at a time.

The Life Cycle Of A Thread

Each thread has a dispatcher state that changes throughout its lifetime.

The most important dispatcher states are:

 Running: only one thread per processor can be running at any time.

 Ready: threads that are in the Ready state may be scheduled for execution
the next time the kernel dispatches a thread. Which Ready thread executes is
determined by their priorities.

 Waiting: threads that are waiting for some event to occur before they
become Ready are said to be waiting. Examples of events include waiting
for I/O, waiting for a message, and waiting for a synchronization object to
become unlocked.

 SCHEDULLING

The Kernel's Dispatcher

The kernel's dispatcher performs scheduling and context switching.

Thread scheduling is the act of determining which thread runs on each processor
at a given time.

Context switching is the act of saving one thread's volatile state (CPU register
contents) and restoring another thread's state so it can continue running where it
previously left off.

How Thread Priorities Affect Scheduling

The kernel's dispatcher schedules threads to run based a 32-level priority scheme.
Windows guarantees that the threads that are ready that have the highest priority
will be running at any given time. (That's one thread on a single-processor system.)
Threads with a priority of 31 will be run before any others, while threads with a
priority of 0 will run only if no other threads are ready. The range of priorities is
divided in half with the upper 16 reserved for real-time threads and the lower 16
reserved for variable priority threads.

Real-time threads run at the same priority for their entire lifetime. They are
commonly used to monitor or control systems that require action to be taken at
very precise intervals. These threads run at higher priorities than all variable
priority threads, which means that they must be used sparingly.

Variable priority threads are assigned a base priority when they are created. (A
thread's base priority is determined by the process to which the thread belongs.)
The priority of such threads can be adjusted dynamically by the kernel's dispatcher.
A thread's dynamic priority can vary up to two priority levels above or below its
base priority.

The dispatcher maintains a priority queue of ready tasks. When prompted to
reschedule, it changes the state of the highest priority task to Standby. When the
conditions are right, a context switch is performed to begin the thread's execution
and the thread goes into the Ready state.

Lower priority threads will always be preempted when a higher priory thread
enters the ready state. This is true even if the lower priority thread has time
remaining in its quantum, or if the lower priority thread is running on a different
processor.

Performance Tuning

In order to get the computer system to perform as users expect, Windows changes
the priorities of threads over time.

Each process has a base priority. Threads in a process can alter their base priority
by up to two levels up or down.

Depending on the type of work the thread is doing, Windows may also adjust the
thread's dynamic priority upwards from its base priority. For instance:

 Threads that are waiting for input get a priority boost, as do threads in the
foreground process. This makes the system responsive to the user.

 Threads get a priority boost after completing a voluntary wait.

 All threads periodically get a priority boost to prevent lower priority threads
from holding locks on shared resources that are needed by higher priority
threads.

 Compute-bound threads get their priorities lowered.

Scheduling On Multiprocessor Systems

A multiprocessing operating system is one that can run on computer systems that
contain more than one processor. Windows is a symmetric multiprocessing (SMP)
system, meaning that it assumes that all of the processors are equal and that they
all have access to the same physical memory. Therefore, Windows can run any
thread on any available processor regardless of what process, user or Executive,
owns the thread.

There are also asymmetric multiprocessing (ASMP) systems in which processors
are different from each other--they may address different physical memory spaces,
or they may have other differences. These operating systems only run certain
processes on certain processors--for instance, the kernel might always execute on a
particular processor.

The design of Windows supports processor affinity, whereby a process or thread
can specify that it is to run on a particular set of processors, but this facility isn't
supported in the first release.

Windows uses the same rules for scheduling on a multiprocessor system as it does
on a single processor system, so at any given time the threads that are ready and
have the highest priorities are actually running.

Using Task Manager
The Task Manager utility shows the applications and processes that are currently
running on your computer, as well as CPU and memory usage information. To
access Task Manager, press CtrlAltDelete and click the Task Manager button.
Alternatively, right-click an empty area in the Taskbar and select Task Manager
from the pop-up menu.
The Task Manager dialog box has four main tabs: Applications, Processes,
Performance, and Networking. These options are covered in the following
subsections.

Managing Application Tasks
The Applications tab of the Task Manager dialog box, shown in Figure iii, lists all
of the applications that are currently running on the computer. For each task, you
will see the name of the task and the current status (running, not responding, or
stopped).
To close an application, select it and click the End Task button at the bottom of the
dialog box. To make the application window active, select it and click the Switch
To button. If you want to start an application that isn’t running, click the New Task
button and specify the location and name of the program you wish to start.

 Processor Scheduling, which allows you to optimize the processor time for
running programs
or background services

 Memory Usage, which allows you to optimize memory for programs or
system cache

 Virtual Memory, which is used to configure the paging file

Stopping Processes
Process Description
System Idle Process A process that runs when the processor is not executing any
other threads
smss.exe Session Manager subsystem
csrss.exe Client-server runtime server service

mmc.exe Microsoft Management Console program (used to track resources
used by MMC snap-ins such as System Monitor)

explorer.exe Windows Explorer interface
Ntvdm.exe MS-DOS and Windows 16-bit application support
Managing Process Priority
You can manage process priority through the Task Manager utility or through the
start command-line utility. To change the priority of a process that is already
running, use the Processes tab of Task Manager. Right-click the process you want
to manage and select Set Priority from the pop-up menu. You can select from
RealTime, High, AboveNormal, Normal, BelowNormal, and Low priorities.

Options for the start Command-Line Utility

Option Description

 low Starts an application in the Idle priority class.
 normal Starts an application in the Normal priority class.
 high Starts an application in the High priority class.
 realtime Starts an application in the RealTime priority class.
 abovenormal Starts an application in the AboveNormal priority class.
 belownormal Starts an application in the BelowNormal priority class.
 min Starts the application in a minimized window.
 max Starts the application in a maximized window.
 separate Starts a Windows 16-bit application in a separate memory space.

By default Windows 16-bit applications run in a shared memory space,
NTVDM, or NT Virtual DOS Machine.

 shared Starts a DOS or Windows 16-bit application in a shared memory
space.

Managing Performance Tasks

The Performance tab shows the following information:

o CPU Usage, in real time and in a history graph
o Page File Usage, in real time and in a history graph
o Totals for handles, threads, and processes
o Physical Memory statistics
o Commit Charge memory statistics

o Kernel Memory statistics

Scheduling Tasks
Windows includes a Task Scheduler utility that allows you to schedule tasks to
occur at specified intervals. You can set any of your Windows programs to run
automatically at a specific time and at a set interval, such as daily, weekly, or
monthly. For example, you might schedule your Windows Backup program to run
daily at 2:00 a.m.

Tuning and Upgrading the Processor

If you suspect that you have a processor bottleneck, you can try the following
solutions:

 Use applications that are less processor-intensive.
 Upgrade your processor.
 If your computer supports multiple processors, add one. Windows can

support up to two processors, which will help if you use multithreaded
applications. You can also use processor affinity to help manage processor-
intensive applications.

Monitoring and Optimizing the Processor

Processor bottlenecks can develop when the threads of a process require more
processing cycles than are currently available. In this case, the process will wait in

A task manager windows

a processor queue and system responsiveness will be slower than if process
requests could be immediately served.
The most common causes of processor bottlenecks are processor-intensive
applications and other subsystem components that generate excessive processor
interrupts (for example, disk or network subsystems).
In a workstation environment, processors are usually not the source of bottlenecks.
You should still monitor this subsystem to make sure that processor utilization is at
an efficient level.

 MEMORY MANAGEMENT

The memory manager implements virtual memory, provides a core set of services
such as memory mapped files, copy-on-write memory, large memory support, and
underlying support for the cache manager.

Memory management in Microsoft Windows operating systems has evolved into a
rich and sophisticated architecture, capable of scaling from the tiny embedded
platforms (where Windows executes from ROM) all the way up to the multi-
terabyte NUMA configurations, taking full advantage of all capabilities of existing
and future hardware designs.

With each release of Windows, memory management supports many new features
and capabilities. Advances in algorithms and techniques yield a rich and
sophisticated code base, which is maintained as a single code base for all platforms
and SKUs.

Memory management improvements in Windows Vista focused on areas such as
dynamic system address space, enhanced NUMA and large system/page support,
advanced video model support, I/O and section access, and robustness and
diagnosability.

Among other things, a multiprogramming operating system kernel must be
responsible for managing all system memory which is currently in use by
programs. This ensures that a program does not interfere with memory already
used by another program. Since programs time share, each program must have
independent access to memory.

Cooperative memory management, used by many early operating systems assumes
that all programs make voluntary use of the kernel's memory manager, and do not
exceed their allocated memory.

Memory protection enables the kernel to limit a process' access to the computer's
memory. Various methods of memory protection exist, including memory
segmentation and paging. All methods require some level of hardware support
(such as the 80286 MMU) which doesn't exist in all computers.

Virtual memory

The use of virtual memory addressing (such as paging or segmentation) means that
the kernel can choose what memory each program may use at any given time,
allowing the operating system to use the same memory locations for multiple tasks.

If a program tries to access memory that isn't in its current range of accessible
memory, but nonetheless has been allocated to it, the kernel will be interrupted in
the same way as it would if the program were to exceed its allocated memory.
When the kernel detects a page fault it will generally adjust the virtual memory
range of the program which triggered it, granting it access to the memory
requested. This gives the kernel discretionary power over where a particular
application's memory is stored, or even whether or not it has actually been
allocated yet.

In modern operating systems, application memory which is accessed less
frequently can be temporarily stored on disk or other media to make that space
available for use by other programs. This is called swapping, as an area of memory
can be used by multiple programs, and what that memory area contains can be
swapped or exchanged on demand.

 ERROR HANDLING

Existing operating systems include error handling tools that identify and log errors
that occur during the operation of the operating systems and provide a user with
the ability to view the logged errors. Although most applications running in the
operating system's environment provide error messages when errors occur, these
error messages are often technical in nature and may not be easily understood by
the user. Therefore, the error handling tools not only identify and log these errors
but, in addition, they describe the errors to the user in an easily comprehensible

format. For example, the Windows NT® operating system by Microsoft
Corporation includes an event log that collects error messages from applications,
device drivers and the operating system itself to a common location that the user
can access. The Windows NT® operating system also includes an event viewer
that permits the user to view the error messages in the order of their occurrences.

For existing error handling tools, the client application must have advance
knowledge of the possible types of service failures. Otherwise, the client
application would not be able to provide meaningful information regarding the
nature of the error. This poses problems in a client-server environment because the
client application and applications of the service providers are loosely coupled and
developed independently, and it is not practical to change an application as its
underlying service provider evolves. It is, therefore, difficult for a client
application to obtain meaningful information for an error message within a
client/server environment.

The present invention resolves the above problems by providing a mechanism for a
client application that identifies the source of a service error and obtains detailed
error information at the time the error occurs. In particular, the mechanism
accesses the error message information specific to the service that encounters the
error and, then, reports that information as part of its error handling operation. The
present invention also functions in a plurality of nested subsystems in which a
subsystem that detects a particular problem is identified among a group of
subsystems that are called in a nested manner. Accordingly, the present invention
automatically handles the operation of reporting events whose source subsystem is
different from that of the reporting subsystem without requiring the reporting
subsystem to have advance knowledge of the possible errors that could be
encountered.

Using Event Viewer

You can use the Event Viewer utility to track information about your computer’s
hardware and software, as well as to monitor security events. Every Windows XP
computer will show three types of log files (depending on your configuration you
may also have other log files):
System log
Tracks events related to the Windows XP operating system. This log is useful in
troubleshooting Windows XP problems.
Security log
Tracks events related to Windows XP auditing. By default auditing is not enabled.

If you enable security auditing you can select what to track and whether you will
track security success and/or failure events.
Application log
Tracks events related to applications that are running on your computer. For
example, you might see that your e-mail program recorded an error. These errors
are useful in troubleshooting application problems or for developers to fix
application problems.

 INTERRUPT

Interrupts are central to operating systems as they provide an efficient way for the
operating system to interact and react to its environment. The alternative is to have
the operating system "watch" the various sources of input for events (polling) that
require action -- not a good use of CPU resources. Interrupt-based programming is
directly supported by most CPUs. Interrupts provide a computer with a way of
automatically running specific code in response to events. Even very basic
computers support hardware interrupts, and allow the programmer to specify code
which may be run when that event takes place.

When an interrupt is received the computer's hardware automatically suspends
whatever program is currently running, saves its status, and runs computer code
previously associated with the interrupt. This is analogous to placing a bookmark
in a book when someone is interrupted by a phone call and then taking the call. In
Windows operating systems interrupts are handled by the operating system's
kernel. Interrupts may come from either the computer's hardware or from the
running program.
kernel is the core process of a preemptive operating system, consisting of a
multitasking scheduler and the basic security services. Depending on the operating
system, other services such as virtual memory drivers may be built into the kernel.
The kernel is responsible for managing the scheduling of threads and processes.

When a hardware device triggers an interrupt the operating system's kernel decides
how to deal with this event, generally by running some processing code. How
much code gets run depends on the priority of the interrupt (for example: a person
usually responds to a smoke detector alarm before answering the phone). The
processing of hardware interrupts is a task that is usually delegated to software
called device drivers, which may be either part of the operating system's kernel,

part of another program, or both. Device drivers may then relay information to a
running program by various means.

A program may also trigger an interrupt to the Windows operating system. If a
program wishes to access hardware for example, it may interrupt the operating
system's kernel, which causes control to be passed back to the kernel. The kernel
will then process the request. If a program wishes additional resources (or wishes
to shed resources) such as memory, it will trigger an interrupt to get the kernel's
attention.

Interrupt Architecture
The first step in exploring the interrupt architecture of Microsoft® Windows® is
defining an overall model of the hardware, kernel, OAL and thread interactions
during an interrupt. The following diagram is an overall picture of these different
levels of responsibility and the transitions that cause changes of state.

The diagram represents the major transitions during an interrupt with time
increasing to the right of the diagram. The bottom most layer of the diagram is the
hardware and the state of the interrupt controller. The next layer is the kernel
interactions during interrupt servicing. The OAL describes the board support
package (BSP) responsibilities. The top most layer represents the application or
driver thread interactions needed to service an interrupt. The diagram represents
the interactions during a single interrupt; representing the new ability of Windows
to have shared interrupts. The activity starts with an interrupt represented by the

line at the left most section of the chart. An exception is generated causing the
kernel ISR vector to be loaded onto the processor. The kernel ISR interacts with
the hardware disabling all equal and lower priority interrupts on all processors
except for the ARM and Strong ARM architectures. The kernel then vectors to the
OAL ISR that has been registered for that particular interrupt. The OAL ISR then
can either directly handle the interrupt or can use NKCallIntChain to walk a list of
installed ISRs. The main ISR or any of the installed ISRs then performs any work
and returns the mapped interrupt called SYSINTR for that device. If the ISR
determines that its associated device is not causing the interrupt the ISR returns
SYSINTR_CHAIN, which causes NKCallIntChain() to walk the ISR list to the
next interrupt in the chain. The ISRs are called in the order that they were installed
creating a priority on the calling list.

Microsoft has advanced the Windows interrupt architecture. The ability of the OS
to deal with shared interrupts greatly extends the ability of Windows to support
many interrupt architectures. Knowledge of this interrupt architecture greatly
speeds up the investigation times into driver and latency issues. A Windows model
of the operating system interaction is the key to this understanding. Shared
interrupts have greatly increased the openness of Windows supporting the platform
provider and application developer scenarios that are pervasive from company to
company or within companies. Understanding latency sources will help in
diagnosis of driver and real-time issues. The interrupt structure in Windows is well
defined and understandable.

 SECURITY

Security has been a hot topic with Windows for many years, and even Microsoft
itself has been the victim of security breaches.[citation needed] Consumer versions
of Windows were originally designed for ease-of-use on a single-user PC without a
network connection, and did not have security features built in from the outset.
Windows NT and its successors are designed for security (including on a network)
and multi-user PCs, but were not initially designed with Internet security in mind
as much since, when it was first developed in the early 1990s, Internet use was less
prevalent.
These design issues combined with flawed code (such as buffer overflows) and the
popularity of Windows means that it is a frequent target of computer worm and
virus writers.
Microsoft releases security patches through its Windows Update service
approximately once a month (usually the second Tuesday of the month), although

critical updates are made available at shorter intervals when necessary. In
Windows 2000 (SP3 and later), Windows XP and Windows Server 2003, updates
can be automatically downloaded and installed if the user selects to do so.

Use these steps to develop a strong password:

 Think of a sentence that you can remember. This will be the basis of your
strong password or pass phrase. Use a memorable sentence, such as "My son
Aiden is three years old."

 Check if the computer or online system supports the pass phrase directly. If
you can use a pass phrase (with spaces between characters) on your
computer or online system, do so.

 If the computer or online system does not support pass phrases, convert it to
a password. Take the first letter of each word of the sentence that you've
created to create a new, nonsensical word. Using the example above, you'd
get: "msaityo".

 Add complexity by mixing uppercase and lowercase letters and numbers. It
is valuable to use some letter swapping or misspellings as well. For instance,
in the pass phrase above, consider misspelling Aiden's name, or substituting
the word "three" for the number 3. There are many possible substitutions,
and the longer the sentence, the more complex your password can be. Your
pass phrase might become "My SoN Ayd3N is 3 yeeRs old." If the computer
or online system will not support a pass phrase, use the same technique on
the shorter password. This might yield a password like "MsAy3yo".

 Finally, substitute some special characters. You can use symbols that look
like letters, combine words (remove spaces) and other ways to make the
password more complex. Using these tricks, we create a pass phrase of
"MySoN 8N i$ 3 yeeR$ old" or a password (using the first letter of each
word) "M$8ni3y0".

 Test your new password with Password Checker Password Checker is a non-
recording feature on this Web site that helps determine your password's
strength as you type.

 4 steps to protect your computer

Step 1. Keep your firewall turned on

What is a firewall?

A firewall helps protect your computer from hackers who might try to delete
information, crash your computer, or even steal your passwords or credit card
numbers. Make sure your firewall is always turned on.

Step 2. Keep your operating system up-to-date

What are operating system updates?

High priority updates are critical to the security and reliability of your computer.
They offer the latest protection against malicious online activities. Microsoft
provides new updates, as necessary, on the second Tuesday of the month.

Step 3. Use updated antivirus software

What is antivirus software?

Viruses and spyware are two kinds of usually malicious software that you need to
protect your computer against. You need antivirus technology to help prevent
viruses, and you need to keep it regularly updated.

Step 4. Use updated antispyware technology

What is antispyware software?

