CHAPTER TWO: SOLUTION OF SIMPLE PIPE FLOW PROBLEMS

The 3 simple pipe flow cases that are basic to solutions of the more complex problems are:
(i) Given: Discharge, Diameter, Length, Coefficient of dynamic/absolute of Kinematics' Viscosity, and absolute rough ness and required to find Head loss due to friction. (i.e. given $\mathrm{Q}, \mathrm{D}, \mathrm{L}, \mu, v, \varepsilon$ and required to find h_{f})
(ii) Given: h_{f}, L, D, μ, or v, ε required to find \mathbf{Q}
(iii) Given: $h_{f}, Q, L, \mu, o r, v, \varepsilon$ required to find \mathbf{D}

CASE 1: EXAMPLE 1

(i) Calculate the loss head due to friction and the power required to maintain flow in a horizontal circular pipe 40 mm diameter and 750 m long when water with coefficient of dynamic viscosity equals $1.14 \times 10^{-3} \frac{\mathrm{~N} . \mathrm{s}}{\mathrm{m}^{2}}$, flows at (a) 4liter/minute (b) 30Liter/minute. Assume that for the pipe the absolute roughness is $8 \times 10^{-5} \mathrm{~m}$.

SOLUTION

- Establish whether the flow is Laminar or Turbulent:

$$
\operatorname{Re}=\frac{\rho d v}{\mu}=\frac{v d}{v}
$$

Note: $v=\frac{\mu}{\rho}$
$Q=\frac{4 \times 10^{-3}}{60}=6.67 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$A=\frac{\pi D^{2}}{4}=1.26 \times 10^{-3} \mathrm{~m}^{2}$
$V=\frac{Q}{A}=0.053 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\frac{\rho v d}{\mu}=\frac{10^{3} \times 0.053 \times 0.04}{1.14 \times 10^{-3}}=1862$

- The flow is Lamina $\mathrm{Re}<2000$
- For Laminar flow the friction factor can be calculated thus:

$$
f^{\prime}=\frac{64}{\mathrm{Re}}=0.03436
$$

- Head loss due to friction, $h_{f}=f^{\prime} \frac{L V^{2}}{D 2 g}$ normally referred to as Darcy Weisbach formula/equation
- $\therefore h_{f}=f^{\prime} \frac{L V^{2}}{D 2 g}=0.092 m$
- Power required to maintain flow

$$
P=\rho g h_{f} Q=\gamma H_{f} Q=10^{3} \times 9.81 \times 0.092 \times 6.67 \times 10^{-5}=0.06 \mathrm{Watts}
$$

$$
Q=\frac{30 \times 10^{-3}}{60}=5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
$$

(ii) $V=\frac{Q}{A}=0.4 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \operatorname{Re}=\frac{\rho V D}{\mu}=14,035=1.4 \times 10^{4} \\
& \operatorname{Re}>2000
\end{aligned}
$$

The flow is Turbulent
Calculate the relative roughness $\frac{\varepsilon}{D}=\frac{8 \times 10^{-5}}{0.04}=0.02$
Use Moody's Chart for $\operatorname{Re}=1.4 \times 10^{4}$ and $\frac{\varepsilon}{D}=0.02$
$f^{\prime}=0.032$
$h_{f}=4.89 \mathrm{~m}$
Power $=24.0$ Watts

CASE 2 EXAMPE 2

2. Water at $15^{\circ} \mathrm{C}$ flows through a 30 cm diameter riveted steel pipe, absolute roughness of 3 mm , with head loss of 6 m in 300 m . Determine the flow.

SOLUTION

$\frac{\varepsilon}{D}=\frac{0.003}{0.3}=0.01$

Assume $f^{\prime}=0.04$
$h_{f}=\frac{f^{\prime} L V^{2}}{d 2 g}$
$6=0.04 \frac{300}{0.3} \frac{V^{2}}{19.62}$
$V=1.715 \mathrm{~m} / \mathrm{s}$
From table of physical properties of water (in any standard text book SI units) at $15^{\circ} \mathrm{C}$, Kinematic Viscosity is $1.139 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
$\therefore \operatorname{Re}=\frac{V d}{v}=451712 \cong 4.5 \times 10^{5}$
from Mood's Chart for $\frac{\varepsilon}{D}=0.01$ and $\operatorname{Re}=4.5 \times 10^{5}$
$f^{\prime}=0.038$ (this value is close enough to the assumed value) it is okay.
$Q=A V=\pi r^{2} \sqrt{\frac{h_{f} d 2 g}{f^{\prime} L}}=\pi\left(r^{2}\right) \sqrt{\frac{6 \times 0.3 \times 19.62}{0.038 \times 300}}=0.1245 \mathrm{~m}^{3} / \mathrm{s}$

CASE 3 EXAMPLE 3

In the third case with Diameter unknown:
(i) There are 2 unknowns in the Darcy-Weisbsch equation $\mathrm{f}^{\prime}, \mathrm{V}$ and D .

$$
h_{f}=\frac{f^{\prime} L V^{2}}{d 2 g}, f^{\prime}, V, d \text { unknown }
$$

(ii) There are 2 unknowns in the continuity equation V and d .
(iii) There are 3 unknowns in Reynolds Number equation V, D, Re
(iv) The relative roughness is also unknown

SOLUTION

Using the continuity equation to eliminate the velocity in darcy-Weisbach equation and in the expression for $\mathbf{R e}$ the problem will be simplified.
$V=\frac{Q}{A}$
$h_{f}=f^{\prime} \frac{L}{D} \frac{Q^{2}}{2 g\left(\frac{\pi D^{2}}{4}\right)^{2}} \cdots \cdots \cdots \cdots \cdot 1$
$D^{5}=\frac{8 L Q^{2}}{h_{f} g \pi^{2}} f^{\prime}=C_{1} f^{\prime}$
Where $C_{1}=$ the known quantities $=\frac{8 L Q^{2}}{h_{f} g \pi^{2}}$
But $V D^{2}=\frac{4 Q}{\pi} \cdots \cdots \cdots$ continuity equation
$\operatorname{Re}=\frac{V D}{v}=\frac{4 Q}{\pi v D}=\frac{C_{2}}{D} \cdots \cdots \cdots \cdots \cdot 2$
$C_{2}=$ knownquantities $=\frac{4 Q}{\pi v}$

The solution is now effected by the following procedure:
(i) Assume a value of f^{\prime}
(ii) Solve equation 1 for D
(iii) Solve equation 2 for Re
(iv) Find the relative roughness
(v) Find new f' from moody's chart with the $\left(\operatorname{Re}, \frac{\varepsilon}{D}\right)$
(vi) Use the new f' and repeat procedure
(vii) When the value of f^{\prime} does not change in the first two significant figures all equations are satisfied and the problem is solved.

EXAMPLE 3

1. Determine the size of clean wrought iron pipe required to convey $260 \mathrm{~L} / \mathrm{s}$ of oil of kinematic viscosity of $9.26 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, and 3048 m length, with head loss of 22.8 m . Absolute roughness is 0.046 mm .

SOLUTION

$D^{5}=\frac{8 L Q^{2} f^{\prime}}{h_{f} g \pi^{2}}=0.745 f^{\prime}$
$\operatorname{Re}=\frac{4 Q}{\pi v D}=\frac{35634}{D}$
Assume $\mathrm{f}^{\prime}=0.02$
$D=0.431 m$
$\frac{\varepsilon}{d}=1.067 \times 10^{-4}$
$\operatorname{Re}=8.268 \times 10^{4}$
From Moody's chart $\mathrm{f}^{\prime}=0.019$
$\frac{\varepsilon}{D}=0.00011$
$\operatorname{Re}=83,451$
$f^{\prime}=0.019$
f' doesn't change significantly
$2^{\text {nd }}$ trial for $f^{\prime}=0.019$

