CHAPTER THREE: MULTIPLE PIPE SYSTEMS ANALYSIS

3.1 Pipe in series: Discharge is constant i.e. $\mathrm{Q}=$ constant

The diagram and illustration as discussed in the class $h_{f}=\frac{f_{1}{ }^{\prime} L_{1}}{d_{1}} \frac{V_{1}{ }^{2}}{2 g}+\frac{f^{\prime}{ }_{2} L_{2} V_{2}{ }^{2}}{d_{2} 2 g}+$ \qquad
assume, $f^{\prime}{ }_{1}=f^{\prime}{ }_{2}=f$, thesame
$V=\frac{Q}{A}$
Substitute $\quad \therefore h_{f}=\frac{f_{1}^{\prime} L_{1}}{2 g} \frac{16 Q^{2}}{\pi^{2} d^{5}{ }_{1}}+\frac{f^{\prime} L_{2} 16 Q^{2}}{2 g \pi^{2} d_{2}{ }^{5}}+$
But $\frac{f^{\prime} L Q^{2} x 16}{19.62 \pi^{2} d^{5}}=\frac{f^{\prime} L Q^{2}}{12 d^{5}}=r Q^{2}$
Where $r=$ pipe constant $=\frac{f^{\prime} L}{12 d^{5}}$
$\therefore h_{f}=r_{1} Q^{2}+r_{2} Q^{2}+r_{3} Q^{2}+$. \qquad

$$
h_{f}=Q^{2} \sum_{1}^{n} r
$$

$$
\text { or } Q=\sqrt{\frac{h_{f}}{\sum r}}
$$

3.2 Equivalent Pipe Method for pipe in series:

An equivalent pipe is a pipe which will carry this particular flow rate and produce the same head loss as two or more pipes. If we are to replace this complex system with a single equivalent pipe;
$h_{f}=r_{e} Q^{2}$ where $r_{\mathrm{e}}=$ pipe constant for equivalent pipe

Hence in a series pipe system

$$
r_{e}=\sum_{1}^{n} r
$$

$$
r_{e} Q^{2}=Q^{2} \sum_{1}^{n} r
$$

3.3 Pipes in parallel: Head loss is a constant i.e. $\mathrm{h}_{\mathrm{f}}=$ constant

The diagram and illustration as discussed in the class
$h_{f 1}=h_{f 2}=h_{f 3}$
The head loss in each pipe between junctions where parallel pipes part and join again must be equal. $Q_{T}=Q_{1}+Q_{2}+Q_{3}$. The total flow rate will equal the s um of individual
flow rates. $Q_{T}=\sqrt{\frac{h_{f}}{r_{1}}}+\sqrt{\frac{h_{f}}{r_{2}}}+\sqrt{\frac{h_{f}}{r_{3}}}$
$Q_{T}=\sqrt{h_{f}} \sum_{1}^{n}\left(\frac{1}{\sqrt{r}}\right)$

3.4 Equivalent Pipe Method for pipe in parallel

If we want to replace the system with a single equivalent pipe then: $h_{f}=r_{e} Q_{T}{ }^{2}$
$Q_{T}=\sqrt{\frac{h_{f}}{r_{e}}}$
$r_{e}=\left(\frac{1}{\sum_{1}^{n}\left(\frac{1}{\sqrt{r}}\right)}\right)^{2}$
or
$r_{e}=\frac{1}{\left(\sum_{1}^{n} \frac{1}{\sqrt{r}}\right)^{2}}$

EXAMPLE 4: For pipe in series $\mathrm{Q}=$ constant.

Pipe in series as shown on the board. Find Q? Given total head loss as $26 \mathrm{~m}, \mathrm{f}^{\prime}=0.01$ $\mathrm{kc}=0.33$, where kc is the coefficient of contraction. Consider all losses and use equivalent pipe method.

SOLUTION

(i) Consider all losses : Write Bernoulli's Equation from reservoir A to B $H_{T}=$ Entrance loss +head loss due to friction+ head loss due to contraction +head loss due to friction + Exit loss

$$
\begin{aligned}
& H_{T}=\frac{0.5 v_{1}^{2}}{2 g}+f^{\prime} \frac{L v_{1}^{2}}{d 2 g}+\frac{0.33 v_{2}^{2}}{2 g}+f^{\prime} \frac{L v_{1}^{2}}{d 2 g}+\frac{v_{2}^{2}}{2 g} \\
& 26=0.225 v_{1}^{2}+0.468 v_{2}^{2} \\
& V_{2}=V_{1}\left(\frac{A_{1}}{A_{2}}\right)=V_{1}\left(\frac{d_{1}^{2}}{d_{2}^{2}}\right)=4 V_{1} \\
& 26=0.225 V_{1}^{2}+0.468\left(4 V_{1}\right)^{2}=7.71 V_{1}^{2} \\
& V_{1}=1.83 \mathrm{~m} / \mathrm{s} \\
& Q=A_{1} V_{1}=A_{2} V_{2}=0.14 m^{3} / \mathrm{s}
\end{aligned}
$$

(ii) Using equivalent pipe method

Neglecting minor losses and calculate pipe constants $r_{1}=\frac{f^{\prime}{ }_{1} L_{1}}{12 d_{1}{ }^{5}}=\frac{0.01 \times 122}{12(0.31)^{5}}=35.51$

$$
r_{2}=1136.37
$$

For pipe in series $r_{e}=\sum_{1}^{2} r=35.51+1136.37=1171.88$
$h_{f}=r_{e} Q^{2}$
$Q=\sqrt{\frac{h_{f}}{r_{e}}}=\sqrt{\frac{26}{1171.88}}=0.149 \mathrm{~m}^{3} / \mathrm{s} \cong 0.15 \mathrm{~m}^{3} / \mathrm{s}$

Example 5 for pipe in parallel $\mathbf{h}_{\mathbf{f}}=$ constant

Find the head loss across the system shown and discharges in each pipe.

SOLUTION

$r=\frac{f^{\prime} L}{12 d^{5}}$

$\mathrm{D}(\mathrm{mm})$	r	\sqrt{r}	$\frac{1}{\sqrt{r}}$
305	785.8	28.03	0.036
200	3812.5	61.75	0.016
405	260.0	16.12	0.062
\sum	0.114		

$$
\begin{aligned}
& r_{e}=\left(\frac{1}{\sum \frac{1}{\sqrt{r}}}\right)^{2} \text { or } \frac{1}{\left(\sum \frac{1}{\sqrt{r}}\right)^{2}} \\
& =\left(\frac{1}{0.114}\right)^{2} \text { or } \frac{1}{(0.114)^{2}}=76.95 \\
& r_{e}=76.95 \\
& h_{f}=76.95(0.34)^{2}=8.9 m
\end{aligned}
$$

(i) To find the discharge in individual pipes, you have to consider individual pipe

$$
\begin{aligned}
& h_{f}=\frac{f^{\prime} L V^{2}}{d 2 g}=\frac{0.017 \times 1464 \times V^{2}}{305 \times 2 \times 9.81}=8.9 \mathrm{~m} \\
& V=1.46 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Consider 305 mm diameter pipe $Q_{305}=0.107 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
& Q_{200}=0.049 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{405}=0.186 \mathrm{~m}^{3} \\
& Q_{T}=\left(Q_{305}+Q_{200}+Q_{405}\right) \cong 0.34 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Using Equivalent pipe method

$\mathrm{h}_{\mathrm{f}}=$ constant

$$
\begin{aligned}
& h_{f}=r_{e} Q_{T}^{2} \\
& r_{e} Q_{T}^{2}=r_{1} Q_{305}^{2} \\
& 76.95(0.34)^{2}=785.8 Q_{305}^{2} \\
& Q_{305}=0.106 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{200}=0.048 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{405}=0.185 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{T}=0.339 \cong 0.34 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

