CHAPTER FOUR: EMPIRICAL EQUATION

The most widely used is the HAZEN WILLIAMS equation: $Q = 0.2785Cd^{2.63}S^{0.54}$ $Q = 0.849CAR^{0.63}S^{0.45}$

Q=m³/s =discharge

C=Hazen Williams roughness coefficient

D=diameter (m)

S= Slope of the energy line=h_f/L

R=A/P= Hydraulic Radius

$$H_f = \left(\frac{10.7L}{C^{1.852}D^{4.87}}\right)Q^{1.852} = rQ^{1.852}$$

Pipe in series $h_f = r_e Q_T^{1.852}$

Pipe in parallel $h_f = Q_T^{1.852}$

EXAMPLE

- a) Two parallel pipes each 150m long, one 200mm diameter and the other 150mm diameter, each with C=120 and Q_T=0.14m³/s, determine the head loss in meter of water.
- b) Two pipe in series one 30m long with a 300mm diameter and the second 100m long with a 250mm diameter each having a C=110, Q_T=0.14m³/s, determine the head loss in meter of water.
- **SOLUTION:** Pipe in parallel

(a)
$$H_f = \left(\frac{10.7L}{C^{1.852}D^{4.87}}\right)Q^{1.852} = rQ^{1.852}$$

but r_1 =579.4, r_2 =2341.9

$$\left(\frac{1}{r_e}\right)^{0.54} = \left(\frac{1}{579.4}\right)^{0.54} + \left(\frac{1}{2351.9}\right)^{0.54} = 0.0473$$
$$r_e = \left(\frac{1}{0.0473}\right)^{1.852} = 284.54$$
$$h_f = r_e Q_T^{1.852} = 7.49m$$

$$r_e = \left(\frac{1}{\sum \left(\frac{1}{r}\right)^{1/n}}\right)$$

NOTE: *n* = 1.852

$$h_f = r_e Q_T^{1.852}$$

(b) Pipe in series

$$\begin{split} r_e &= r_1 + r_2 = 18.8961 + 153.05 = 171.95 \\ h_f &= r_e Q_T^{-1.852} = 4.5m \end{split}$$

TAKE HOME ASSIGNMENT

(1) The dimensions of the figure shown below are shown in this table,

Pipe	L(m)	D(m)	С	r
1	75	0.05	110	2.91x10 ⁵
2	100	0.07	110	5.39x10 ⁴
3	150	0.1	100	2.37x10 ⁴

Find the total discharge in reservoir B.

(2) Water flows in the parallel pipe system shown below for which the following data are

available.

Pipe	Diameter (m)	Length (m)	ť
AaB	0.1	300	0.024
AbB	0.15	250	0.022
AcB	0.2	500	0.02

The supply pipe to point A is 0.3m diameter and the mean velocity of water in it is 3m/s. If

the elevation of point A is 100m and elevation of point B is 30m above datum, calculate the pressure at point B if that at point A is 200KN/m². What is the discharge in each pipe, neglect all minor losses.