CHAPTER FOUR: EMPIRICAL EQUATION

The most widely used is the HAZEN WILLIAMS equation: $\begin{aligned} & Q=0.2785 C d^{2.63} S^{0.54} \\ & Q=0.849 C A R^{0.63} S^{0.45}\end{aligned}$
$\mathrm{Q}=\mathrm{m}^{3} / \mathrm{s}=$ discharge
C=Hazen Williams roughness coefficient
$\mathrm{D}=$ diameter (m)
$S=$ Slope of the energy line $=h_{f} / L$
R=A/P= Hydraulic Radius
$H_{f}=\left(\frac{10.7 L}{C^{1.852} D^{4.87}}\right) Q^{1.852}=r Q^{1.852}$
Pipe in series $h_{f}=r_{e} Q_{T}{ }^{1.852}$

Pipe in parallel $h_{f}=Q_{T}^{1.852}$

EXAMPLE

a) Two parallel pipes each 150 m long, one 200 mm diameter and the other 150 mm diameter, each with $\mathrm{C}=120$ and $\mathrm{Q}_{\mathrm{T}}=0.14 \mathrm{~m}^{3} / \mathrm{s}$, determine the head loss in meter of water.
b) Two pipe in series one 30 m long with a 300 mm diameter and the second 100 m long with a 250 mm diameter each having a $\mathrm{C}=110, \mathrm{Q}_{\mathrm{T}}=0.14 \mathrm{~m}^{3} / \mathrm{s}$, determine the head loss in meter of water.

SOLUTION: Pipe in parallel
(a) $H_{f}=\left(\frac{10.7 L}{C^{1.852} D^{4.87}}\right) Q^{1.852}=r Q^{1.852}$
but $r_{1}=579.4, r_{2}=2341.9$
$\left(\frac{1}{r_{e}}\right)^{0.54}=\left(\frac{1}{579.4}\right)^{0.54}+\left(\frac{1}{2351.9}\right)^{0.54}=0.0473$
$r_{e}=\left(\frac{1}{0.0473}\right)^{1.852}=284.54$
$h_{f}=r_{e} Q_{T}{ }^{\text {!.852 }}=7.49 m$

$$
r_{e}=\left(\frac{1}{\sum\left(\frac{1}{r}\right)^{1 / n}}\right)^{n}
$$

NOTE: $n=1.852$

$$
h_{f}=r_{e} Q_{T}{ }^{1.852}
$$

(b) Pipe in series
$r_{e}=r_{1}+r_{2}=18.8961+153.05=171.95$
$h_{f}=r_{e} Q_{T}^{1.852}=4.5 \mathrm{~m}$

TAKE HOME ASSIGNMENT

(1) The dimensions of the figure shown below are shown in this table,

Pipe	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	C	r
1	75	0.05	110	2.91×10^{5}
2	100	0.07	110	5.39×10^{4}
3	150	0.1	100	2.37×10^{4}

Find the total discharge in reservoir B.
(2) Water flows in the parallel pipe system shown below for which the following data are available.

Pipe	Diameter (m)	Length (m)	f $^{\prime}$
AaB	0.1	300	0.024
AbB	0.15	250	0.022
AcB	0.2	500	0.02

The supply pipe to point A is 0.3 m diameter and the mean velocity of water in it is $3 \mathrm{~m} / \mathrm{s}$. If the elevation of point A is 100 m and elevation of point B is 30 m above datum, calculate the pressure at point B if that at point A is $200 \mathrm{KN} / \mathrm{m}^{2}$. What is the discharge in each pipe, neglect all minor losses.

