BRANCHING PIPES

The three interconnected reservoirs as shown above;

1) Flow through each pipe is wanted
2) Reservoir elevations are given with the sizes and types of pipes
3) Fluid properties are assumed known
4) The Darcy-Weisbach and continuity equation must be satisfied for each pipe.
5) The flow into the junction (J) must be equal to the flow out of the junction

SOLUTION PROCEDURE: Solution is effected thus:
(i) Assume an elevation of the Hydraulic Grade Line (HGL) at the junction
(ii) Compute $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3}
(iii) Substituting into the continuity equation i.e. $Q_{1}=Q_{2}+Q_{3}$ or

$$
Q_{1}+Q_{2}=Q_{3}
$$

If the flow into the junction is to great (more), a higher grade-line elevation which will reduce the inflow and increase the outflow is assumed. $Z=y+\frac{P}{\gamma}=H G L$ Z=Position of hydraulic grade line or piezeometric height.

ANALYSIS

NOTE: It is supposed that all pipes are sufficiently long, so that minor losses and velocity heads may be neglected. (When L/d>2000 neglect minor losses)
$Z=y+\frac{P}{\gamma}=H G L$
$h_{f}=h-Z=r Q^{2}$

Write flow equations for all the three pipes

$$
\begin{array}{ll}
& h_{1}-Z=r_{1} Q_{1}{ }^{2} \\
\text { (i) } & Q_{1}=\sqrt{\frac{\left|h_{1}-Z\right|}{r_{1}}} \\
& h_{2}-Z=r_{2} Q_{2}{ }^{2} \\
\text { (ii) } & Q_{2}=\sqrt{\frac{\left|h_{2}-Z\right|}{r_{2}}} \\
& h_{3}-Z=r_{3} Q_{3}{ }^{2} \\
\text { (iii) } & Q_{3}=\sqrt{\frac{h_{3}-Z}{r_{3}}}
\end{array}
$$

Equation of continuity $Q_{1}=Q_{2}+Q_{3}$ or $Q_{1}+Q_{2}=Q_{3}$
Sign convection must be adopted and maintained (signs of flow are dictated by choice of h-z or z-h)

- Towards joint positive +
- Away from joint negative -
- $\quad \therefore \sum_{1}^{n} Q=0$

If Z is first estimated and sum of Q calculated, it will result in a value that sum of Q will not equal to zero i.e. . Where dQ is a function of the error in the estimated value of Z. If δQ is very small then $\frac{\delta Q}{\delta Z}=-\sum_{1}^{n} \frac{Q}{2(h-Z)}$ the error in the estimated value of Z is δZ.
$\therefore \delta Z=\frac{-2 \delta Q}{\sum \frac{Q}{h-z}}$

Thus the "correction" to apply to Z (assumed) to make sum of Q to zero is $+\frac{2 \delta Q}{\sum \frac{Q}{h-z}}$

PROCEDURE FOR ANALYSIS

(1) Assume an initial value for Z
(2) Compute resulting $\sum Q \neq 0$
(3) If appreciable, estimate $\sum \frac{Q}{h-z}$ correct z with the error function and recalculate.

EXAMPLES

(1) A reservoir A with its surface 60 m above datum supplies water to a junction D through a 300 mm diameter pipe 1500 m long. From the junction, a 250 mm diameter pipe 800 m long feeds reservoir B, in which the surface level is 30 m above datum, while a 200 mm diameter pipe 400 m long feeds reservoir C , in which the surface level is 15 m above datum. Calculate the volume rate of flow to each reservoir. Assume the loss of head due to friction is given by $h=\frac{f^{\prime} L Q^{2}}{12 d^{5}}$ and the friction factor for each pipe is 0.04 .
(2) Given the information below on the diagram for four reservoirs. The elevation of junction is 8 m and f^{\prime} for all the pipes is 0.02 .

Pipes	$\mathrm{h}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$r=\frac{f^{\prime} L}{12 d^{5}}$
1	17	150	0.6	3.215
2	10	300	0.3	205.48
3	6	900	0.45	81.45
4	3	450	0.3	308.22

(i) Calculate the discharge Q to each reservoir.
(ii) Calculate the pressure in pipeline at joint.

Three open reservoirs A, B and C have constant water surface elevations $90 \mathrm{~m}, 45$ and 72 m respectively. The reservoirs are connected through a common junction J by pipe lines having characteristics given below. The junction J is at elevation 60 m . Determine the flow in the pipes.

