ASSIGMENTS

Problem 1

Given : Trapezoidal earth channel $B=2 \mathrm{~m}$, sideslope $=1 \mathrm{~V}: 2 \mathrm{H}, \mathbf{n}=\mathbf{0 . 0 2}, \mathrm{S}=0.003 \mathrm{~m} / \mathrm{m}$, normal depth $\mathrm{y}=0.5 \mathrm{~m}$.

Find : Velocity V and discharge Q

Problem 2

Given : A concrete trapezoidal channel $B=1.5 \mathrm{~m}$, sideslope $=1 \mathrm{~V}: 2 \mathrm{H}, \mathrm{n}=0.013$, slope $=$ $0.002, \mathrm{Q}=3 \mathrm{~m}^{3} / \mathrm{s}$

page53

Find : Depth y and velocity v

Problem 3

Given: A compound channel as illustrated, with an n value of 0.03 and a longitudinal slope of $0.002 \mathrm{~m} / \mathrm{m}$

Page57
Find: Discharge Q

Problem 4

Given : Determine the critical depth in a trapezoidal shaped swale with $z=1$, given a discharge of $9.2 \mathrm{~m}^{3} / \mathrm{s}$ and bottom Width $=6 \mathrm{~m}$. Also, determine the critical velocity.

page76

Find : Critical depth and Velocity at critical depth

WATER HAMMER

Water hammer is the term used to express the resulting shock caused by the sudden decrease in the motion (velocity) of a fluid.

Simply put if the velocity of a liquid in a pipeline is abruptly decreased by a valve movement the phenomenon encountered is called WATER HAMMER.

- It is a very important problem in the case of hydroelectric plants where the flow of water must be rapidly varied in proportion to the load changes on turbine.
- Water hammer occurs in liquid flow pressure systems whenever a valve is closed.
- Note: The terminology water hammer may be misleading since the phenomenon can occur in any liquid.
- In a pipeline the time of travel of the pressure wave up and back (round trip) is given by: $T_{r}=\frac{2 L}{C_{p}}$
- T_{r} = time of roundtrip in seconds
- L=Length of pipe in meter
- $C_{p}=$ Celerity of pressure wave in (m / s)
- FOR RIGID PIPES (Non-Elastic): The velocity of pressure wave (sound wave) is commonly referred to as ACOUSTIC VELOCITY.
- $C=\sqrt{\frac{g E_{v}}{\gamma}}=\sqrt{\frac{E_{v}}{\rho}} k N / m^{2}$
- $E_{v}=$ Volume modulus of the medium. For water a typical value is $2.07 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$, thus the velocity of pressure wave in water is $\mathrm{C}=1440 \mathrm{~m} / \mathrm{s}$.
- ELASTIC PIPES: But for water in an elastic pipe this value is modified by the stretching of the pipe walls. E_{v} is replaced by K such that
- $K=\frac{E_{v}}{1+\left(\frac{D}{t}\right)\left(\frac{E_{v}}{E}\right)}$
- $\mathrm{D}=$ diameter of the pipe
- t=thickness of the pipe
- $E=$ the modulus of elasticity of the pipe material.

Therefore the velocity of a pressure wave in an elastic pipe is; $C_{p}=\sqrt{\frac{g K}{\gamma}}=C \sqrt{\frac{1}{1+\frac{D E_{v}}{t E}}}$

For normal pipe dimensions the velocity of a pressure wave in a water pipe usually ranges between 600 and $1200 \mathrm{~m} / \mathrm{s}$ but it will always be less than $\underline{1440 \mathrm{~m} / \mathrm{s} .}$

- The increase in pressure caused by the sudden closing of a valve is calculated by;

$$
d_{p}=\rho C_{p} d V
$$

- Change in pressure $=$ density x celerity x change in velocity.

INSTANTANEOUS CLOSURE:

In case of instantaneous and complete closure of a valve, the velocity is reduced from V to zero, i.e. $\Delta V=V, \Delta p$ then represents the increase in pressure due to valve closure,

- The water hammer pressure $P_{h}=\rho C_{p} V$

