LECTURE 2

2.0 WATER IN FOODS

Water as basic constituent of ALL foods.

2.1 FORMS OF WATER IN FOOD

- Free water/moisture
- Hydrates of water
- Imbibes water
- Adsorbed water

2.2 **PROPERTIES OF WATER**

- Structure and Bonds in water H2O, covalent and H-bonds.
- Some physical properties of water and ice.
 - * Density
 - * Vapour pressure
 - * Refractive index
 - * Viscosity
 - * Specific heat
 - * Heat of vapourization
 - * Thermal conductivity
 - * Dielectric constant
 - * Coefficient of thermal expansion
 - * Melting point
 - * Boiling point.

2.3 WATER ACTIVITY

_

The concept of water activity relates the moisture (water) in a food to the RH of the air surrounding the food and is defined as ratio of the partial pressure of water in a food to the vapour pressure of water at the same temperature.

 $a_w = p/p_o$ where P = vapour pressure of water in food

 P_{o} = vapour pressure of pure water at the same temperature

 a_w = Water Activity.

OR aw can be defined as the ratio of the vapour pressure of water in a food to the saturated vapour pressure of water at the same temperature.

- i.e. P/P_o where P (pa) = Vapour pressure of water in food
 - P_{o} = Vapour pressure of pure water at the same temperature.
 - a_w = water activity
- for pure water $a_w = 1.0$
- High m.c. amount of moisture > that of solids, $a_w \le 1.0$
- Adsorption process

Dry product subjected to increasing moisture levels in the surrounding/Environment.

- Desorption process

Moist product gradually equilibrating with lower moisture levels of the surrounding/environment.

- Hysteresis loop
 - Difference between abdorption and desorption isotherms.
 - It occurs because adsorption and desorption isotherms are more identical.

2.4 WATER ACTIVITY AND FOOD SPOILAGE

- Moisture content and a_w are important factors which affect ratio of spoilage of food in terms of chemical, biochemical and microbiological reaction.
- for M.c 5-15% moist, dried foods (powdered) Great storage stability
- M.C. 20-40% Intermediate moisture foods less stable than dried foods.

2.4.1 Biochemical/Chemical Reactions Attached By aw

- Most Enzymes are inactivated when $a_w < 0.85$ e.g. Amylases, peroxidases etc
- Lipases are still active at a_w 0.3 or less.
- Maillard reactions occur at $a_w 0.6 0.7$.

2.4.2 Microbiological reactions

- Bacterial growth Impossible at $a_w < 0.90$
- Molds and yeasts Inhibited between $a_w 0.88 0.80$
- Osmophilic yeasts can grow at a_w of 0.65