LECTURE 4

4.0 **BROWNING REACTIONS**

Complex reactions which occur in food leading to formation of brown colour. It could be as a result of processing or storage of food. Two main types:

- Enzymic Browning
- Non-Enzymic

4.1 **ENQYMIC BROWNING OF FOODS**

Browning catalysed by enzyme, it occurs in the

- Presence of oxygen
- Phenolase Enzyme (or Polyphenol loxidases)
- Enzyme activity can be divided into 2:
 - The cresolase activity
 - The catecholase activity.
- Characteristics:
 - The enzymes are copper proteins and they are active in the monovalent form of copper.
 - pH of activity near 7
 - Fairly resistant to heat.
- Specificity of the Enzyme
 - Acts on monophenol or ortho-diphenol not on meta-diphenol.
- Reactions:
 - Crisolate activity It acts as oxygen transferable in the hydrogenation ofmonophenol to polyphenol derivatives. Eg. Tyrasine – 3, 4 – dihydroxy phenyl Alamine (DOPA).
 - Catcholase activity.
 - Acts as a dehydragenase enzyme in removing Hydrogen from substances. DOSA – O. quinine phenyl Alamine,
 - The quinine then forms DOPAchrome which polymerises to form melanin.
- Application:

Common during processing of vegetable tissues that rich in polyphenols e.g yam.

4.1.2 Control of Enzymic Browning

Aim – To stop activity of phenolase enzyme.

Methods:

- Heat treatment e.g. Blanching
- Use of SO_2 It inhibits phenolase enzyme.
- Use of acids.
 - Eg. Ascorbic acid other acids e.g. Citric, Malic
- Removal of surface oxygen
- Use of salts e.g. Nacl solution
- Other methods e.g. Borate salts, HCN etc. Some of these may not be applicable to food because of some other effects e.g HCN in poisonous, boric/Borate salt may colour the food etc.