CORYNEBACTERIUM SPECIES

- Small Gram-positive pleomorphic (coccoid, club and rod forms) bacteria
- Stained smear reveals cells in palisades of parallel and angular clusters resembling
 Chinese letters
- Non-motile facultative anaerobes
- Catalase-positive, oxidase-negative
- Fastidious, require enrichment for growth
- Cause pyogenic infection
- Most pathogenic species are host specific
- Type species: C. diptheriae, causes diphtheria in children

Diseases

- i. Corynebacterium bovis
 - Host (cattle): subclinical mastitis
- ii. C. kutscheri
 - Host (laboratory rodents): superficial absceses, causes purulent foci in liver, lungs and lymph nodes
- iii. *C. pseudotuberculosis* (non-nitrate-reducing biotype)
 - Host (Sheep and goats): caseous lymphadenitis
- iv. *C. pseudotuberculosis* (nitrate-reducing biotype)
 - Host (horses, cattle): ulcerative lymphagitis, abscesses
- v. C. renale (type I)
 - Cattle: cystitis, pyelonephritis
 - Sheep and goats: ulcerative (enzootic) balanoposthitis
- vi. *C. pilosum* (renale type II)
 - Cattle: cystitis, pyelonephritis
- vii. *C. cystitides* (renale type III)
 - Cattle: severe cystitis, rarely pyelonephritis
- viii. C. ulcerans
 - Cattle: mastitis

Diagnosis

- Specimen: pus, exudates, tissue, sample, mid-stream urine
- Direct microscopy of Gram-stained smear may reveal coryneform bacteria
- Inoculate sample onto blood agar, selective media (McLeod's blood agar, Loeffler's medium) containing potassium tellurite, and MacConkey agar
- Incubate aerobically at 37°C for 24 to 48 hours
- Identification: no growth on MacConkey agar
- Colonial Characteristics:
 - o *C. bovis*: a lipophilic bacterium. Small white, dry, non-haemolytic colonies
 - o *C. kutscheri:* whitish colonies, occasionally haemolytic
 - C. pseudotuberculosis: small whitish colonies, surrounded by a narrow zone of complete haemolysis evident after 72 hours of incubation. Colonies become dry, crumbly and cream-coloured with age
 - Members of *C. renale* group produce small, non-haemolytic colonies after 24 hours incubation. Produce pigment after 48 hours of incubation
- Microscopy: Gram's staining and Albert's staining techniques
 Albert's staining demonstrate metachromatic granule (inclusions)
- Biochemical tests
 - o Nitrate reduction: C. pseudotuberculosis biotype
 - o All pathogenic corynebacteria are urease positive except *C. bovis*

Differentiation of C. renale group

Feature	C. renale (type I)	C. pilosum (type II)	C. cystidis (type III)
Colour of colony	Pale yellow	Yellow	White
Growth in broth at pH	+	-	-
5.4			
Nitrate reduction	-	+	-
Acid from xylose	-	-	+
Acid from starch	-	+	+
Casein digestion	+	-	-
Hydrolysis of Tween 80	-	-	+

 Enhanced haemolysis by C. pseudotuberculosis when inoculated across a streak of Rhadococcus equi

ACTINOMYCES ARCANOBACTERIUM AND ACTINOBACULUM SPECIES

- Gram-positive bacteria
- Require enriched media for growth
- Non-motile, non-sporing
- Morphologically heterogenous
- Anaerobic or facultative anaerobic
- Modified Z-N staining negative
- Some members have undergone changes in nomenclature
 - Corynebacterium pyogenes = Actinomyces pyogenes = Arcanobacterium pyogenes
- Actinomyces species have long filamentous morphology, although short V, Y, and T configuration also occur
- Arcanobacterium and Actinobacterium both have a coryneform morphology

Diseases

Arcanobacterium pyogenes

Host: cattle, sheep, pigs

Conditions: Abscessation, mastitis, suppurative pneumonia, endometritis, pyometra, arthritis, umbilical infections

Actinomyces hordeovulneris

Host: dogs

Conditions: cutaneous and visceral abscessation, pleuritis, peritonitis, arthritis

Actinomyces viscosus

Host: dogs

Conditions: canine actinomycosis

- cutaneous pyogranulomas
- pyothorax and proliferative pyogranulomatous pleural lesions
- disseminated lesions (rare)

Actinomyces bovis

Host: cattle

Conditions: bovine actinomycosus (lumpy jaw)

Actinomyces viscosus

Horses: cutanous pustules

Cattle: abortion

Actinomyces spp (unclassified)

Pigs: pyogranumatous mastitis

Horses: poll evil, fistulous withers

Actinobaculum suis

Pigs: cystitis, pyelonephritis

Diagnosis

Clinical specimens: exudates, aspirates and tissue samples from post-mortem

Direct Gram staining of smear may reveal morphological forms of aetiological agent

 Inoculate blood and MacConkey agars and incubate at 37°C for up to 5 days. Different species have peculiar atmospheric requirement for culture

- Identification criteria
 - Arcanobacterium pyogenes produce a characteristics hazy haemolysis along streak lines after 24 hours of aerobic incubation. Pin point colonies are seen after 48 hours. Proteolytic, hydrolyses gelatine
 - o Actinomyces bovis: adhere to agar media and produces no haemolysis
 - Actinomyces hordeovulneris: same as A. bovis
 - Actinomyces viscosus: produce two colony types
 - Large and smooth: V,Y, and T cell configurations
 - Small and rough: short branching filament
 - Actinobaculum suis: poor haemolysis on ruminant blood agar. Colonies have a shiny raised centre and a dull edge. It is urease positive

SPECIES DIFFERENTIATIONS

Characteristics	Actinomyces	Actinomyces	Actinomyces	Arcanobacterium	Actinobaculum suis
	bovis	viscosus	hordeovulneris	pyogenes	
Morphology	Filamentous	Filamentous	Filamentous	Coryneforms	Coryneform
	branching,	branching,	branching,		
	some short	short forms	short forms		
	forms				
Atmospheric	Anaerobic	10% CO ₂	10% CO ₂	Aerobic	Anaerobic
requirement	+ CO ₂				
Haemolysis on	±	-	±	+	±
sheep blood					
agar					
Catalase	-	+	+	-	-
production					
Pitting on	-	-	-	+	-
Loeffler's serum					
slope					
Granules in the	Sulphur	White granules	No granules	No granules	No granule
pus	granules				

 Granules in lesion is caused by A. bovis contains characteristic clubs. Club colonies are also produced by Actinobacillus ligniersii and Staphylococcus aureus botryomycosis

RHODOCOCCUS EQUI

- Gram-positive aerobic bacteria
- Non-motile catalase-positive, oxidase-negative
- Weakly acid fart
- Grows on non-enriched media
- Rod or coccibacillus in shape
- Produces pigments, colonies are pink
- It forms capsule. Produces large, moist, viscid/mucoid colonies

<u>Diseases</u>

Foals of 1 to 4 months of age: suppurative bronchopneumonia and pulmonary abscessation

Horse: superficial abscessation

Pigs, Cattle: mild cervical lymphadenopathy

Cats: subcutaneous abscesses, mediastinal granulomas

Diagnosis

Specimens: tracheal aspirates, pus from lesion

- Inoculate blood and MacConkey agar
- Incubate aerobically at 37 °C for 24 to 48 hours
- No growth on MacConkey
- Does not ferment carbohydrate
- Does not haemolyse on blood agar. It is cAMP test positive. (enhanced haemolysis) with
 S. aureus
- Most strains are urease and H₂S positive

Tutorial Questions

- 1 Describe the type of colouration produced when *Listeria monocytogen* colonies are viewed under oblique illumination
- 2 What is the significance of Anton's test in the diagnosis of *Listeria monocytogenes*
- 3 Describe the cold enrichment procedure for the diagnosis of *Listeria monocytogenes*
- 4 What is the aetiological agent of diamond skin disease of pigs
- 5 List two selective media for the isolation of *Corynebacterium spp*
- 6 What staining technique is employed for the demonstration of *Corynebacterial metachromatic* ranules

PSEUDOMONADACEAE

Pathogenic members that infect animals include:

Pseudomonas aeruginosa

Burkholderia mallei

Burkholderia pseudomallei

- Gram negative rods of medium size
- Obligate aerobes
- Oxidase-positive and catalase-positive
- Pseudomonas species and Burkholderia pseudomallei are motile by polar flagella
- Burkholderia mallei is non-motile and require 1% glycerol for enhanced growth
- P. aeruginosa produces pigments which diffuse into culture media
- Pigments of P. aeroginosa include:

o Pyocyanin: blue-green

o Pyoverdin: greenish-yellow

o Pyorubin: red

o Pyomelanin: brownish-black

Diseases

• *P. aeruginosa:* causes opportunistic infection in many species of animals

Cattle: mastitis, metritis, pneumonia, calve enteritis, dermatitis

Pigs: Ear infection, respiratory tract infection

Horses: genital tract infection, pneumonia, eye infection

Sheep: mastitis, pneumonia, otitis media, fleece rot/suppurative dermatitis

(predisposing factor: heavy rainfall)

Dogs and Cats: pneumonia, ulcerative keratitis, cystitis, otitis externa

Minks: haemolytic pneumonia, septicaemia, farmed minks very susceptible

Rabbits: pneumonia, septicaemia

Reptiles: necrotic stomatitis, especially in captive reptile (found in oral cavity of snakes)

- Burkholderia mallei: glanders (a contagious disease of equidae characterized by the formation of nodules and ulcers in the respiratory tracts or on the skin
- Burkholderia pseudomallei: causes melioidosis-chronic debilitating disease with disseminated abscesses in many organs of the body
- Pseudomonas flourescene and P. putida: pathogens of freshwater fish

Diagnosis

- Sample collection: based on observed clinical signs and lesions. Samples may include
 pus, respiratory aspirates, ear swab, mastitic milk, discharges, blood (for serology) etc.
- Inoculate blood agar and MacConkey agar plates
- Incubate aerobically for 24 to 48 hours at 37°C
- B. mallei grows on media containing 1% glycerol and also on MacConkey agar
- Identification criteria:
 - Colonial morphology
 - Microscopy
 - Biochemical reactions
- Serology
 - o Compliment fixation test and agglutination technique for *B. mallei* detection
 - Slide agglutination, ELISA, CFT, indirect haemagglutination test used for detection of *B. pseudomallei* serum antibodies
- The mullein test: an efficient field test for screening and confirmation of glanders in animals. Mallein is a glycoprotein extract of *B. mallei*
 - o It is injected intradermally just below the lower eyelid
 - A local swelling with mucopurulent ocular discharge is evident after 24 hours in positive cases
- *P. aeruginosa*: produces pigments detectable in media that contains no dye e.g. nutrient agar. It also has a characteristic fruity, grape-like odour

Comparative features of the Pseudomonadaceae

Feature	P. aeruginosa	B. mallei	B. pseudomallei
Colonial morphology	Large and flat with	White and smooth	Range from smooth and
	serrated edges	becoming granular and	mucoid to rough and
		brown with age	dull becoming yellowish
			brown with age
Haemolysis on blood	+	-	+
agar			
Diffusible pigment	+	-	-

production			
Colony odour	Grape-like	None	Musty
Growth on MacConkey	+	+	+
agar			
Growth at 42°C	+	-	+
Motility	+	-	+
Oxidase production	+	±	+
Oxidation of			
carbohydrate:			
Glucose	+	+	+
Lactose	-	-	+
Sucrose	-	-	+

ENTEROBACTERIACEAE

- Members are Gram-negative rods about 3 μm in length
- Oxidase-negative, catalase-positive
- Ferment glucose and a variety of other sugars
- Non-sporing facultative anaerobes
- Reduce nitrates to nitrites
- Mostly enteric organisms
- Motile members possesses peritrichous flagella
- Grow well on MacConkey agar because they tolerate bile salts
- Categorised into two broad groups based on lactose fermentation
 - o Lactose fermenters e.g. E. coli, Klebsiella spp
 - o Non-lactose fermenters e.g. Salmonella spp, Proteus spp
- Major animal pathogens (cause both enteric and systemic diseases)
- Examples:
 - o E. coli
 - o Salmonella serotype
 - Yesinia spp
 - Y. pestis

- Y. enterocolitica
- Y. pseudotuberculosis
- Y. intermedia
- Y. kristensenii
- Y. frederiksenii
- Y. ruckerii: pathogen of fish
- Opportunistic pathogens cause disease outside the GIT
- Major pathogens, cause disease in both enteric and non-enteric locations

Yersinia species:

- Yesiniae stain bipolar on primary isolation
- Yersiniae are intracellular organisms localizing in macrophages

o Y. pestis:

- It is pleomorphic
- It produces little or no turbidity and small deposit in broth culture
- Haemin required for aerobic growth on nutrient agar
- Two forms of colony: smooth and rough
- Causes plaque: bubonic plaque, (septicemic, pneumonic sylvalstic forms).
 Characterized by lymohadenitis
- Virulence factor F1 or fraction I (capsular/envelope heat-labile protein), V
 (protein), W (lipoprotein), F (factor antigens)
- Probably produces toxin
- Virulence strains kill mice or guinea pigs following intraperitoneal or subcutaneous injection with as low as 10 viable organisms
- Transmission: Wild rat (through flea) to town rat (through flea) to humans

Diagnosis

- blood sample, materials from lymph nodes
- grow on blood agar and selective media

- Fluorescent antibody test on cerebrospinal fluid and in aspirates

Note:

- Colonies of non-lactose fermenting bacteria are alkaline due to utilization of peptone in medium. They are pale
- Colonies of lactose fermenters are pintk due to acid production from lactose
- Somatic (O), flagellar (H), and capsular (K) antigens are used for serological identification and classification of the enterobacteriaceae

Differentiation and Identification of the Enterobacteriaceae

	E. coli	Salmonella	Yersinia	Proteus	Enterobacter	Klebsiella
		serotype	species	species	serotype	pneumonia
Clinical importance	Major	Major	Major	Opportunistic	Opportunistic	Opportunistic
	pathogens	pathogen	pathogen	pathogen	pathogen	pathogen
Cultural characteristics	Some	-	-	Swarming	Mucoid	Mucoid
	strains			growth		
	haemolytic					
Motility at 30°C	Motile	Motile	Motile	Motile	Motile	Non-motile
Lactose fermentation	+	-	-	-	+	+
IMV _i C test						
Indole production	+	-	V	±	-	-
Methyl red test	+	+	+	+	-	-
Voges ProsKauer test	-	-	-	V	+	+
Citrate utilization test	-	+	-	V	+	+
H ₂ S production in TSI	-	+	-	+	-	-
agar						
Lysine decarboxylate	+	+	-	-	+	+

Urease production	-	-	+	+	-	+

Yersinia pseudotuberculosis

- Causes infection in many animals including guinea pigs, mice, rats, rabbits, chicken, turkey, pigeons, and canaries
- Sporadic cases reported in horses, cattle, sheep, goats, pigs and cats
- Produced in necrotic nodules in ileum and caecum as well caseous necrosis of mesenteric lymph nodes and omentum
- Grows on blood agar, MacConkey and Salmonella-shigella agar at 37°C and at room temperature (22°C – 28°C)
- Samples of isolation of organism: liver, spleen, heart blood

Yersinia enterocolitica

- Grows on blood agar, Salmonella-shigella agar, desoxycholate citrate agar (DCA) and MacConkey agar
- May require enrichment in phosphate buffered solution (pH 7.6) or peptone broth at 4°C for 3weeks
- Must be differentiated from Pasteurella

Note the following characteristic of Pasteurella: MR negative, Oxidase positive, no growth on MacConkey except Manhemia haemolytica

- Yersinia enterocolitica grows at 4°C unlike other enteric bacteria
- Pig is a major reservoir
- Isolation requires enrichment them subculture on agar then do identification tests.

Proteus

- P. vulgaris
- P. mirabilis
- Pathogenic role doubtful
- May cause diarrhoea in young animals

- Otitis media in dogs
- Often causes infection only when found outside the intestinal tract
- Associated with chronic urinary tract infections

Diagnosis

Produces characteristic smell and swarms on solid media

Klebsiella

K. pneumoniae

- Pneumoniae in humans
- Klebsiella and Enterobacter cause neonatal meningitis in children
- Opportunistic infections in animals
- Pneumonia in fowls, metritis in mare and sow
- Mastitis (chronic) in cow
- Complicate air-sac infection and pullorum disease in poultry
- Other species: K. ozaenae, K. rhinoscleromatis

Providencia

P. stuartii, P. rettgeri, P. alcalifaciens

- Involved in urinary tract infection, sepsis, pneumonia and wound infections
- Hospital infection

Morganella

M. morganii

- Hospital infection
- Implicated in summer diarrhoea in children

Biochemical differentiation of Proteus species

	Proteus	Proteus	Providencia	Morganells
	vulgaris	mirabilis	rettgeri	morgani
Maltose	+	-	-	-
fermentation				
Mannitol	-	-	Delayed	-

fermentation				
Indole	+	-	+	+
production				
Gelatin	+	+	-	-
liquefaction				
H ₂ S production	+	+	-	+
Citrate	-	-	+	-
utilizatio				
Urease	+	+	-	+
production				

Salmonella

Selective media:

- Desoxycholate citrate agar: slightly opaque often with central black spot
- Brilliant-green agar: S. typhi, S. gallirum, S. pullorum, S. cholerae-suis and S. typhi-suis do
 not grow on the agar. Colonies are pale-pink usually surrounded by a pink zone.
 Colonies have a translucent dew-drop appearance
- Wilso and Blair agar: colonies are black
- Salmonella-shigella agar: colonies are pale or colourless
- Hektoen enteric agar: blue-green with black centre
- Motile except *S.galinarium* and *S. pullorum*
- Enrichment media:
 - o Selenite F. broth
 - Tetrathionate broth
 - Rappaport broth

Reactions of Members of Enterobacteriaceae in Triple Sugar Iron (TSI) agar

	pH change		H ₂ S production
Species	Slant	Butt	

Salmonella serotype	Red (alkaline)	Yellow (acid)	+
Proteus mirabilis	Red	Yellow	+
P. vulgaris	Yellow	Yellow	+
E. coli	Yellow	Yellow	-
Yersinia enterocolitica	Yellow	Yellow	-
Y. pseudotuberculosis	Red	Yellow	-
Y. pestis	Red	Yellow	-
Enterobacter aerogenes	Yellow	Yellow	-
Klebsiella pneumoniae	Yellow	Yellow	-
Shigella species	Yellow	Red	-

Shigella

- Non-motile
- Non-sporing
- Non-capsulated
- Oxidase-negative, catalase-positive
- Shigella dysenteriae type I is catalase negative
- Species
- o Sh. dysenteriae (Tropics):dysentery in human and monkey (shigellosis, colitis)
- o Sh. flevneri (Tropics): dysentery in human and monkey (shigellosis, colitis)
- o Sh. boydii (Tropics): dysentery in human and monkey (shigellosis, colitis)
- o Sh. sonnei (temperate): dysentery in human and monkey (shigellosis, colitis)

Diagnosis

- Sample: fresh stool
- Small colonies on DCA and MacConkey agar
- Shgella dysenteriae type I does not grow on DCA
- No growth on Wilson and Blair medium

- Grow on S-S agar and Hektoen enteric agar producing pale and green colonies respectively
- May be inhibited to a certain extent by selenite F broth

Biochemical reactions:

Glucose fermentation	Positive (acid only)
Lactose fermentation	Negative
Sucrose fermentation	Negative
Mannitol fermentation	Variable
Indole production	Variable
MR reaction	Positive
Voges-Prostkauer	Negative
Citrate utilization	Negative
H ₂ S production	Negative
Urease production	Negative
Motility	Negative

Biochemical differentiation of *Shigellae*

Test	Sh. dysenteriae	Sh. Flexneri	Sh. boydii	Sh. Sonnei
Glucose	Acid (A)	A/A and G (gas)	Acid	Acid
lactose	-	-	-	Late fermenter
Mannose	-	Acid	Acid	Acid
Sucrose	-	-	-	-
Dulcitol	-	-/A	-	-
Xylose	-	-	-	-
ONPG test	-/+	-	-	+
Indole	Variable	Strain variation	Variable	-

ONPG: Orthonitrphenol (-β-D-galactopyranoside)