COURSE CODE: STS 331
COURSE TITLE: DISTRIBUTION THEORY 1

NUMBER OF UNIT: 3 UNITS

COURSE DURATION: THREE HOURS PER WEEK.
COURSE COORDINATOR: PROFESSOR O.E. ASIRIBO. asiribo@yahoo.com
LECTURER OFFICE LOCATION: DEPARTMENT OF STATISTICS

CDURSE CDNTENT:

Distribution function of random variables (r.v), Probability density function (p.d.f)

- continuous and discrete, Cumulative Distribution function (CDF), Marginal and Conditional distributions, Joint distributions, Stochastic Independence, Derived distributions, Moments and Cumulants. Mathematical expectations, Moment generating function, Weak and strong laws of large numbers and Central limit theorem.

CDURSE REQUTREMENTS:

This is a compulsory course for all statistics students. Students are expected to have a minimum of 75% attendance to be able to write the final examination.

READING LIST:

(1) Introduction to the Theory of Statistics by Mood, A.M, Graybill, F.A. and Boes, D.C.
(2) Introduction to Mathematical Statistics by Hogg R.V. and Craig A. T.
(3) Probability and Statistics by Spiegel, M. R., Schiller, J and Alusrinivasan, R..

LECNURE NDTAS

Definition I:

Given a random experiment with a sample space , a function X which assign to each element $\mathrm{c} \quad$, one and only one real number $\mathrm{X}(\mathrm{c})=\mathrm{x}$ is called a Random Variable.

The space of X is the set of real numbers $A=\{\mathrm{x}: \mathrm{x}=\mathrm{X}(\mathrm{c}) ; \mathrm{c} \quad\}$.
Example: Let the random experiment be the tossing of a single coin and let the sample space associated with the experiment be $=\{\mathrm{c}: \mathrm{c}$ is Tail or c is Head $\}$.

Then X is a single value, real-value function defined on the sample space such that

$$
\begin{aligned}
X(c)=0 & \text { if } \mathrm{c} \text { is Tail } \\
1 & \text { if } \mathrm{c} \text { is Head }
\end{aligned}
$$

i.e $\quad A=\{\mathrm{x}: \mathrm{x}=0,1\}$.

X is a r.v. and the associated sample space is A.

Definition 2:

Given a random experiment with the sample space . Consider two random variables X_{1} and X_{2} which assign to each element c of one and only ordered pair of numbers: X_{1} (c) $=\mathrm{x}_{1}, \mathrm{X}_{2}(\mathrm{c})=\mathrm{x}_{2}$.

The space of X_{1} and X_{2} is the set of ordered pairs.

$$
A=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): \mathrm{x}_{1}=\mathrm{X}_{1}(\mathrm{c}), \mathrm{x}_{2}=\mathrm{X}_{2}(\mathrm{c}), \mathrm{c}\right\}
$$

Definition 3:

Given a random experiment with the sample space . Let the random variable X_{i} assign to each element $\mathrm{c} \quad$, one and only one real no. $\mathrm{X}_{\mathrm{i}}(\mathrm{c})=\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1, \ldots$, n . the space of these random variables is the set of ordered n - turples.
$A=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right): \mathrm{x}_{1}=\mathrm{x}_{1}(\mathrm{c}), \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}(\mathrm{c}), \mathrm{c} \quad\right\}$

Probability Density function

Let X denote a r.v. with space A and let $A C A$, we can compute $p(A)=p\left(\begin{array}{ll}x & A\end{array}\right)$ for each A under consideration. That is, how the probability is distributed over the various subsets of Д. This is generally referred to as the probability density function (pdf).

There are two types of distributions, viz; discrete and continuous.

Discrete Density Function

Let X denote a r.v. with one dimensional space A. Suppose the space is a set of points s. t. there is at most a finite no. of points of A in any finite interval, then such a set A will be called a set of discrete points. The r.v. X is also referred to as a discrete r.v.

Note that X has distinct values $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ and the function is denoted by $\mathrm{f}(\mathrm{x})$
Where $\mathrm{f}(\mathrm{x})=\mathrm{p}\left\{\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right\}$ if $\mathrm{x}=\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}$

$$
=0 \quad \text { if } x \neq x_{i}
$$

i.e $\mathrm{f}(\mathrm{x}) \geq 0 \quad \mathrm{x} \quad A$
$\Sigma \mathrm{f}(\mathrm{x})=1$

CONTINUOUS DENSITY FUNCTION.

Let A be a one dimensional r.v; then a r.v. X is called continuous if there exist a function f(x)
s.t. $\int_{A} f(x) d x=1$
where (1)

$$
\mathrm{f}(\mathrm{x})>0 \quad \mathrm{x} \quad A
$$

(2) $f(x)$ has atmost a finite no. of discontinuity in every finite interval (subset of A) if A is the space for r.v. X and if the probability set function $p(A), A \subset A$ can be expressed in terms of $f(x)$
s.t: $\mathrm{p}(\mathrm{A})=\mathrm{p}(\mathrm{x} \quad \mathrm{A})=\int_{A} f(x) d x ;$
then x is said to be a r.v. of the continuous type with a continuous density function.

Cumulative distribution function

Let the r.v. X be a one dimensional set with probability set function $\mathrm{p}(\mathrm{A})$. Let x be a real value no. in the interval $-\infty$ to x which includes the point x itself, we have
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{x} \quad \mathrm{A})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$.
This probability depends on the point x, a function of x and it is denoted by
$\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$
The function $\mathrm{F}(\mathrm{x})$ is called a cumulative distribution function (CDF) or simply referred to as distribution function of X .

Thus $F(x)=\sum_{w \leq x} f(w) \quad$ (for discrete r.v. X)

And $\mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} f(w) d w \quad$ (for continuous r.v. X)

Where $f(x)$ is the probability density function.

Properties of the Distribution function, F(X).

a. $\quad 0 \leq F(x) \leq 1$ and $\xrightarrow[x \rightarrow-\infty]{\lim } F(x)=0$ and $\xrightarrow[x \rightarrow \infty]{\lim } F(x)=1$
b. $\quad F_{X}(x)$ is a monotonic, non decreasing function i.e. $F(a) \leq F(b)$ for $\mathrm{a}<\mathrm{b}$
c. $\quad F(x)$ is continuous from the right i.e. $\lim F(x+h)=F(x)$ for $h>0$ and h small

Note: $(\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$ the equality makes it continuous from the right while without equality, it is from the left)

Assignment

1. The Prob. Dist. Function of time between successive customer arrival to a petrol station is given by

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{x}) & =0 & \mathrm{x}<0 \\
& =10 \mathrm{e}^{-10 \mathrm{x}} & 0 \leq \mathrm{x}<\infty .
\end{array}
$$

Find:
a. $\quad \mathrm{P}(0.1<\mathrm{x}<0.5)$
b. $\quad \mathrm{P}(\mathrm{X}<1)$
c. $\quad \mathrm{P}(0.2<\mathrm{x}<0.3$ or $0.5<\mathrm{x}<0.7)$
d. $\quad \mathrm{P}(0.2<\mathrm{x}<0.5$ or $0.3<\mathrm{x}<0.7)$

MARGINAL AND CONDIDTIONAL DISTRIBUTION

Definition 1: Joint Discrete Density Function: If $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is a k-dimensional discrete r.v., then the joint discrete density function of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$ denoted by $f_{\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots \mathrm{X}_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and defined as $f_{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{x}_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=p\left(\mathrm{X}_{1}=x_{1}, \mathrm{X}_{2}=x_{2}, \ldots \mathrm{X}_{k}=x_{k},\right)$

Note $\sum \mathrm{f}_{\mathrm{X}_{1}, \mathrm{X}_{2}}, \ldots \mathrm{X}_{k}\left(x_{1}, x_{2}, \ldots x_{k}\right)=1$
Where the summation is over all possible value of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$
Definition 2: Marginal Discrete Density Function: If X and Y are joint discrete r.v., then $f_{\mathrm{X}}(x)$ and $f_{\mathrm{Y}}(y)$ are called marginal discrete density functions. That is, if $f_{\mathrm{X}, \mathrm{Y}}(x, y)$ is a joint density function for joint discrete r.v. X and Y . then
$f_{\mathrm{X}}(x)=\sum_{y_{i}} f_{\mathrm{X}, \mathrm{Y}}(x, y) \quad$ and $\quad f_{\mathrm{Y}}(y)=\sum_{x_{i}} f_{\mathrm{X}, \mathrm{Y}}(x, y)$
Also let (X, Y) be joint continuous r.v. with joint probability density function $f_{\mathrm{X}, \mathrm{Y}}(x, y)$, then

$$
\mathrm{P}[(\mathrm{X}, \mathrm{Y}) \in \mathrm{A}]=\iint_{\mathrm{A}} f_{\mathrm{X}, \mathrm{Y}}(x, y) d x d y
$$

If

$$
\mathrm{A}=\left\{(x, y) ; a_{1}<x \leq b_{1} ; a_{2}<y \leq b_{2}\right\}, \quad \text { then }
$$

$$
\mathrm{P}\left[a_{1}<x \leq b_{1} ; a_{2}<y \leq b_{2}\right]=\int_{a_{2}}^{b_{2}}\left[\int_{a_{1}}^{b_{1}} f_{\mathrm{X}, \mathrm{Y}}(x, y) d x\right] d y
$$

Assignment

Given
$f(x, y)=x+y \quad(0<x<1 ; 0<y<1)$
(a) Find p($0<x<1 / 2,0<y<1 / 4)$

If X and Y are joint continuous r.v. then, $f_{\mathrm{X}}(x)$ and $f_{\mathrm{Y}}(y)$ are called marginal probability functions, given by
$f_{\mathrm{X}}(x)=\int_{-\infty}^{\infty} f_{\mathrm{X}, \mathrm{Y}}(x, y) d y$ and $f_{\mathrm{Y}}(y)=\int_{-\infty}^{\infty} f_{\mathrm{X}, \mathrm{Y}}(x, y) d x$
(b) Find the marginal density function of Y and hence, obtain $\mathrm{p}(\mathrm{Y}=2)$.

CONDITIONAL DISTRIBUTION FUNCTION

Conditional discrete density function: Let X and Y be joint discrete r.v. with joint discrete density function $f_{\mathrm{X}, \mathrm{Y}}(x, y)$. The conditional discrete density function of Y given $\mathrm{X}=\mathrm{x}$ denoted by $f_{y / x}(y / x)$ is defined as
$f_{Y / x}(y / x)=\frac{\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(x, y)}{f_{\mathrm{X}}(x)}$
where $f_{\mathrm{X}}(x)$. is the marginal density of X at the point $\mathrm{X}=\mathrm{x}$.
similarly $\quad f_{X / Y}(x / y)=\frac{\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(x, y)}{f_{\mathrm{Y}}(y)}$

$$
=\frac{\mathrm{P}[\mathrm{X}=x, \mathrm{Y}=y]}{\mathrm{P}(\mathrm{Y}=y)}=\mathrm{P}(\underline{\mathrm{X}=x / \mathrm{Y}=y})
$$

Note that $\sum_{y} f_{\mathrm{Y} / \mathrm{X}}(y / x)=\sum_{y} \frac{f_{\mathrm{X}, \mathrm{Y}}(x, y)}{f_{\mathrm{X}}(x)}=\frac{f_{\mathrm{X}}(x)}{f_{\mathrm{X}}(x)}=1$
\Longrightarrow that it is a probability density function.
The above definition also holds for the continuous case.
$\int_{-\infty}^{\infty} f_{Y / X}(y / x) d y=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y) d y}{f_{\mathrm{X}}(x)}=\frac{f_{\mathrm{X}}(x)}{f_{\mathrm{X}}(x)}=1$

Stochastic Independence (S.I.)

Definition: Let $X_{1}, X_{2}, \ldots, X_{k}$ be a k - dimensional continuous (or discrete) r.v. with joint density function
$f_{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{k}}\left(x_{1}, x_{2}, \ldots x_{k}\right)$ and marginal density function $\mathrm{f}_{\mathrm{Xi}_{\mathrm{i}}}\left(\mathrm{x}_{\mathrm{i}}\right)$ then $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}$ are said to be stochastically independent iff

$$
f_{\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots \mathrm{X}_{k}}\left(x_{1}, x_{2}, \ldots x_{k}\right)=\prod_{i=1}^{k} f_{\mathrm{X}_{i}}\left(x_{i}\right) \quad \forall x_{i}
$$

for example, if r.v. X_{i} and X_{2} have the joint density function $f_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(x_{1}, x_{2}\right)$ with marginal pdf $\quad f_{\mathrm{X}_{1}}\left(x_{1}\right)$ and $f_{\mathrm{X}_{2}}\left(x_{2}\right)$ respectively, then X_{1} and X_{2} are said to be stochastically independent iff $f_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(x_{1}, x_{2}\right)=\mathrm{f}_{\mathrm{X}_{1}}\left(x_{1}\right) \mathrm{f}_{\mathrm{x}_{2}}\left(x_{2}\right)$

Note that
$f\left(x_{1}, x_{2}\right)=f\left(x_{2} / x_{1}\right) f\left(x_{1}\right)$ by earlier definition of conditional density
$\Rightarrow f\left(x_{2}\right)=f\left(x_{12}\right)$ iff X_{1} and X_{2} are independent.
Also recall that

$$
\begin{aligned}
& f\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x \\
& =\int_{-\infty}^{\infty} f\left(x_{2} / x_{1}\right) f\left(x_{1}\right) d x_{1} \\
& =f\left(x_{2} / x_{1}\right) \int_{-\infty}^{\infty} f\left(x_{1}\right) d x_{1} \\
& =f\left(x_{2} / x_{1}\right) \quad \text { if } f\left(x_{2} / x_{1}\right) \text { does not depend on } x_{1} \\
& \Rightarrow f\left(x_{1}, x_{2}\right)=f\left(x_{2} / x_{1}\right) f\left(x_{1}\right) \\
& \quad=f\left(x_{2}\right) f\left(x_{1}\right)
\end{aligned}
$$

Exercise

Let the joint pdf of X_{1} and X_{2} be given as

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =x_{1}+x_{2} & & 0<x_{1}<1 ; .0<x_{2}<1 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Show that X_{1} and X_{2} are stochastically dependent
Theorem: Let the r.v. X_{1} and X_{2} have the joint density function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$, then $\mathrm{X}_{1}, \mathrm{X}_{2}$ are said to be stochastically independent iff $f\left(x_{1}, x_{2}\right)$ can be written as the product of nonnegative function of x_{1} alone and non-negative function of x_{2} alone. i.e
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{g}\left(\mathrm{x}_{1}\right) \mathrm{h}\left(\mathrm{x}_{2}\right) \quad$ where $\mathrm{g}\left(\mathrm{x}_{1}\right)>0, \mathrm{~h}\left(\mathrm{x}_{2}\right)>0$

Proof:

If X_{1} and X_{2} are S.I, then $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$ where $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are marginal density function of X_{1} and X_{2} respectively, i.e
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{g}\left(\mathrm{x}_{1}\right) \mathrm{h}\left(\mathrm{x}_{2}\right)$ is true
Conversely
If $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)$, then for the r.v. of the continuous type, we have
$f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{2}=g\left(x_{1}\right) \int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2}=c_{1} g\left(x_{1}\right)$
$f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{1}=h\left(x_{2}\right) \int_{-\infty}^{\infty} g\left(x_{1}\right) d x_{1}=c_{2} h\left(x_{2}\right)$
Where c_{1} and c_{2} are constants and not functions of x_{1} or x_{2}
But

$$
\begin{aligned}
& \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right)=\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{1} d x_{2}=1 \quad \text { since a pdf } \\
& \Rightarrow \int_{-\infty}^{\infty} g\left(x_{1}\right) d x_{1} \int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2}=c_{1} c_{2} \\
& \Rightarrow c_{1} c_{2}=1 \\
& \text { i.e } \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{g}\left(\mathrm{x}_{1}\right) \mathrm{h}\left(\mathrm{x}_{2}\right)=\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~g}\left(\mathrm{x}_{1}\right) \mathrm{h}\left(\mathrm{x}_{2}\right)=\mathrm{c}_{1} \mathrm{~g}\left(\mathrm{x}_{1}\right) \mathrm{c}_{2} \mathrm{~h}\left(\mathrm{x}_{2}\right)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right) \mathrm{f}_{2}\left(\mathrm{x}_{2}\right) \text { i.e } \mathrm{X}_{1} \text { and } \mathrm{X}_{2}
\end{aligned}
$$ are S.I

Theorem 2: If X_{1} and X_{2} are S.I. with marginal pdf $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ respectively, then $\mathrm{P}\left(\mathrm{a}<\mathrm{x}_{1}<\mathrm{b}, \mathrm{c}<\mathrm{x}_{2}<\mathrm{d}\right)=\mathrm{p}\left(\mathrm{a}<\mathrm{x}_{1}<\mathrm{b}\right) \mathrm{p}\left(\mathrm{c}<\mathrm{x}_{2}<\mathrm{d}\right)$ for $\mathrm{a}<\mathrm{b}$ and $\mathrm{c}<\mathrm{d}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants.

Proof: from definition of S.I of X_{1} and X_{2},

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \\
& \begin{aligned}
& \mathrm{P}\left(a<x_{1}<b ; c<x_{2}<d\right)=\int_{c}^{d} \int_{a}^{b} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
&=\int_{c}^{d} \int_{a}^{b} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
&=\left[\int_{a}^{b} f_{1}\left(x_{1}\right)\right]\left[\int_{c}^{d} f_{2}\left(x_{2}\right)\right] \\
&=\mathrm{P}\left(a<x_{1}<b\right) \mathrm{P}\left(c<x_{2}<d\right)
\end{aligned}
\end{aligned}
$$

Exercise:

(a) Given $f(x, y)=x+y$
obtain $\mathrm{P}\left(0<x<\frac{1}{2} ; 0<y<\frac{1}{2}\right), \mathrm{P}\left(0<x<\frac{1}{2}\right)$ and $\mathrm{P}\left(0<y<\frac{1}{2}\right)$ and hence show that X and Y are not S.I.
(b) Given $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{e}^{-(\mathrm{x}+\mathrm{y})} 0<\mathrm{x}<\infty, 0<\mathrm{y}<\infty$

Show that X and Y are independent.

DERIVED DISTRIBUTIONS

Consider a continuous r.v. X and the relation
$Y=a+b x$
Since X is a r.v., so is Y .
Suppose we which to find the density function of Y. let $f(x)$ be the density function of X where

$$
\begin{aligned}
f(x) & >0 & & \propto<x<\beta \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

If $b>0$, then Y assumes values between $a+b \alpha$ and $a+b \beta$, hence

$$
\begin{align*}
\mathrm{P}(\mathrm{Y} \leq y) & =\mathrm{P}(\mathrm{Y} \leq a+b x) \\
\text { or } \quad \mathrm{P}(\mathrm{Y} \leq y) & =\mathrm{P}(a+b \mathrm{X} \leq y) \\
& =\mathrm{P}\left(\mathrm{X} \leq \frac{y-a}{b}\right) . \tag{2}
\end{align*}
$$

If $\mathrm{F}(\mathrm{x})$ and $\mathrm{G}(\mathrm{y})$ are distribution functions of X and Y respectively, then $G(y)=F\left(\frac{y-a}{b}\right)$

Since the density of $\mathrm{Y}, \mathrm{g}(\mathrm{y})$ is given by $g(y)=\frac{d G}{d y}$
$\Rightarrow g(y)=\frac{d F\left(\frac{y-a}{b}\right)}{d y}=\frac{d}{d y} \int_{-\infty}^{\frac{y-a}{b}} f(x) d x=\frac{1}{b} f\left(\frac{y-a}{b}\right)$
The transformation given in (1) is known as one to one transformation.
Generalization of (1):
Let $\mathrm{Y}=\phi(\mathrm{x})$ \qquad
since Y is a function of X, we can solve equation (4) for X to obtain X as a function of Y denoted by

$$
\begin{align*}
\mathrm{X} & =\Psi(\mathrm{Y}) \tag{5}\\
& =\phi^{-1}(\mathrm{y})
\end{align*}
$$

The transformation in equations (4) and (5) are said to be $1-1$ if for any value of $x, \phi(x)$ yields one and one value of Y and if for any value of $\mathrm{Y}, \Psi(\mathrm{Y})$ yields one and only one value of X.

Theorem: Let X and Y be continuous r.v. defined by the transformation $\mathrm{Y}=\phi(\mathrm{x})$ and $\mathrm{X}=\varphi(\mathrm{Y})$

Let these transformations be either increasing or decreasing functions of X and Y and 1-

1. If $f(x)$ is the pdf of X where $f(x)>0$
$\alpha<x<\beta$ and
$f(x)=0$ elsewhere

Then Pdf of Y is
$g(y)=\left|\frac{d \phi(y)}{d y}\right| f(\phi(y)) \quad \alpha_{1}<y<\alpha_{2}$
where

$$
\begin{aligned}
& \alpha_{1}=\min [\varphi(\alpha), \varphi(\beta)] \\
& \alpha_{2}=\max [\varphi(\alpha), \varphi(\beta)]
\end{aligned}
$$

Proof: Let $\alpha_{1}=\phi(\alpha)$ and $\alpha_{2}=\phi(\beta)$, in this case, $\phi(x)$ is an increasing function of X since $\alpha<\beta$ and
$\mathrm{G}(\mathrm{y})=\mathrm{p}(\mathrm{Y} \leq \mathrm{y})=\mathrm{p}(\phi(x) \leq y)$
$=\mathrm{P}[\mathrm{X} \leq \varphi(y)]=F(\varphi(y))=\int_{-\infty}^{\varphi(y)} f(x) d x$
The density of Y is therefore given by
$g(y)=\frac{d G(y)}{d y}=\frac{d}{d y} \int_{-\infty}^{\varphi(y)} f(x) d x$
or
$g(y)=\frac{d \varphi(y)}{d y} F(\varphi(y)) \quad \phi(\alpha) \leq y \leq \phi(\beta)$
Since $\phi(x)$ is an increasing function of x , hence $\mathrm{d} / \mathrm{dy} \varphi(y)>0$ which makes $g(y) \geq 0$.
Now suppose that $\phi(x)$ is an decreasing function of X , i.e. as X increasing $\phi(x)$ decreases. Thus the min of Y is $\phi(\beta)$ and maximum value of Y is $\phi(x)$.
$G(y)=p(Y \leq y)=p(\phi(x) \leq y)$
$=p(X \geq \varphi(y))=1-F(\varphi(y))$

Hence the pdf of Y is given as
$g(y)=d / d y G(y)=-{ }^{d \varphi(y)} / d y F(\varphi(y)) \quad \phi(\beta) \leq y \leq \phi(\alpha)$
Since $\phi(x)$ is a decreasing function of X , thus $\varphi(y)$ is a decreasing function of y and the partial derivative of $\varphi(y)<0$.
i.e. $d / d y \varphi(y)<0$
$\Rightarrow g(y) \geq 0$.
i.e $g(y)=|d \rho(y) / d y| f(\varphi(y)) \quad \alpha_{1}<\mathrm{y}<\alpha_{2}$

TRANSFORMATION OF VARIABLES OF DISCRETE TYFPE

Let X be a r.v. of discrete type with a pdf $\mathrm{f}(\mathrm{x})$. Let \boldsymbol{A} denote the set of discrete points for which $\mathrm{f}(\mathrm{x})>0$ and let $\mathrm{Y}=v(x)$ be a 1-1 transformation that mapped A onto β. Let $x=\omega(y)$ be the solution of $y=\nu(x)$, then for each $y \varepsilon \beta$, we have $x=\omega(y) \in \boldsymbol{A}$
\Rightarrow event $Y=y[\operatorname{orv}(x)=y]$ and $X=\omega(y)$ are equivalent
Thus
$g(y)=p[Y=y]=p[X=\omega(y)=F(\omega(y))] \quad y \in \beta$

ASSIGNMENT

Given X to be a discrete r.v. with a poison distribution function, obtain pdf of $\mathrm{Y}=4 \mathrm{X}$

Let $f\left(x_{1}, x_{2}\right)$ be the joint pdf of two discrete r.vs. X_{1} and X_{2} with set of points at which $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)>0$. Define a 1-1 transformation such that $Y_{1}=U_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=U_{2}\left(X_{1}, X_{2}\right)$, for which the joint pdf jis given by $g\left(y_{1}, y_{2}\right)=f\left(\omega_{1}\left(y_{1}, y_{2}\right), . \omega_{2}\left(y_{1}, y_{2}\right)\right), y_{1} y_{2} \in \beta$
$x_{1}=\omega_{1}\left(y_{1}, y_{2}\right)$ and $x_{2}=\omega_{2}\left(y_{1}, y_{2}\right)$ are the inverse of $y_{1}=U_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=U_{1}\left(x_{1}, x_{2}\right)$.
from the joint pdf $g\left(y_{1}, y_{2}\right)$, we then obtain the marginal pdf of y_{1} by solving over y_{2} and vice-versa.

TRANSFORMATION OF VARIABLES OF CONTINUOUS TYPE

Let X be a r.v. of continuous type with a pdf of $f(x)$. Let \boldsymbol{A} be a one dimensional space for $\mathrm{f}(\mathrm{x})>0$. Consider a 1-1 transformation which maps the set \boldsymbol{A} onto set β. Let the inverse of $Y=v(x)$ be denoted by $x=w(y)$ and let the derivative $\frac{d x}{d y}=\omega^{\prime}(y)$ be continuous and not vanishing for all points $Y \in \beta$. Then the points of $Y=U(x)$ is given by

$$
\begin{aligned}
g(y) & =f(\omega(y))\left|\omega^{1}(y)\right| & & y \in \beta \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

$\left|\omega^{1}(y)\right|$ is called the Jacobian of the linear transformation $x=\omega(y)$ is denoted by $|J|$.

Exercise

Given X to be continuous with
Ca) $\quad f(x)=1 \quad 0<x<1$

$$
=0 \quad \text { elsawhere }
$$

Show that $Y=-2 \ln x$ has χ^{2} distribution with 2 df .
(b)

$$
f(x)=2 x
$$

$$
0 \Leftrightarrow x \in 1
$$

$$
=0 \quad \text { elsewhere }
$$

find pdf of $Y^{\prime}=8 x^{2}$
(c) $\quad f(x)=e^{-x} \quad x \geqslant 0$

$$
=0 \quad \text { elsewhere }
$$

find pdf of $Y=\sqrt{x}$

The method of finding the pdf of a function one r.v. can be extended to two or more r.v.s of continuous type.

Let $Y_{1}=\varepsilon_{1}\left(x_{1}, x_{2}\right)$

$$
Y_{2}=U_{1}\left(x_{1} x_{2}\right)
$$

Define a 1-1 transformation which maps a 2-dimensional set of A in the x_{1}, x_{2} plane into 2-dimensional set of B in the y_{1} and y_{2} plane. If we express each of x_{1}, x_{2} in terms of y_{1} and y_{2}, we can write $x_{2}=w_{1}\left(y_{1} y_{2}\right)$ and $x_{2}=w_{2}\left(y_{1} y_{2}\right)$, and the determinant of order 2 can be obtained
$J=\left|\begin{array}{ll}\frac{d x_{1}}{d y_{1}} & \frac{d x_{1}}{d y_{2}} \\ \frac{d x_{2}}{d y_{1}} & \frac{d x_{2}}{d y_{2}}\end{array}\right|$

Known as the Jacobtan of transformation

It is assumed that these first order partial derivatives are continuous and that J is not identically equal to zero in B .

Exercise 1;

Given the r.v. X with
$f(x)=1 \quad 0<x<1$
Q= elsewhere

Let X_{1} and X_{2} denote random samples from the distribution. Obtain the marginal density function of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$ respectively.

Exercise 2:

Let X_{1} and X_{2} be a r.s. from an exponential distribution of the form
$f(x)=e^{-x}$

- 0

Given $Y_{1}=X_{1}+X_{2}$

$$
Y_{2}=\frac{X_{n}}{\tilde{u}_{6}+i_{0}}
$$

Show that Y_{1} and Y_{2} are S.I.

Mathematical Expectation

Let X be a r.v. with pdf $\mathrm{f}(\mathrm{x})$ and let $\mathrm{V}(\mathrm{x})$ be a function of x such that $\int_{-\infty}^{\infty} V(x) f(x) d x$ exists $\forall \mathrm{x}$ (continuous r.v.) and $\sum V(x) f(x)$ exists if X is a discrete r.v. The integral or summation as the case may be is called the mathematical expectation or expected value of $V(x)$ and it is denoted by $E[(x)]$. It is required that the integral or sum converge absolutely. More generally, let $x_{1}, x_{2}, \ldots x_{n}$ be a r.v. with pdf $\mathrm{f}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and let
$\mathrm{V}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be a function of the variable such that the n -fold integrals exist, i.e. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots . \int_{-\infty}^{\infty} V\left(x_{1}, x_{2}, \ldots x_{n}\right) f\left(x_{1}, x_{2}, \ldots x_{n}\right) d x_{1}, d x_{2}, \ldots d x_{n}$ exists, if the r.vs. are of continuous type and $\sum_{x_{1}} \ldots \sum_{x_{n}} V\left(x_{1}, x_{2}, \ldots x_{n}\right) f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ exists if the r.vs. are discrete.

The n -fold integrals or the n -fold summation is called the mathematical expectation denoted by $\mathrm{E}\left[\left(V\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)\right]$ of function $\mathrm{f}\left(x_{1}, x_{2}, \ldots x_{n}\right)$.

Properties of Mathematical Expectation

1) If k is a constant, then $\mathrm{E}(k)=k$
2) if k is a constant and V is a function, then $\mathrm{E}(k V)=k \mathrm{E}(V)$
3) if k_{1} and k_{2} are constants and V_{1} and V_{2} are functions the $\mathrm{E}\left(k_{1} V_{1}+k_{2} V_{2}\right)=k_{1} \mathrm{E}\left(V_{1}\right)+k_{2} \mathrm{E}\left(V_{2}\right)$

Example:

$f(x)=2(1-x) \quad 0<x<1$
$\mathrm{E}(x)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} 2 x(1-x) d x=1 / 3$
$\mathrm{E}\left(x^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} 2 x^{2}(1-x) d x=1 / 6$
$V(x)=\mathrm{E}\left(x^{2}\right)-[\mathrm{E}(x)]^{2}=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{6}-\frac{1}{9}=\frac{3}{54}$
$\mathrm{E}\left(6 x+3 x^{2}\right)=6 \mathrm{E}(x)+3 \mathrm{E}\left(x^{2}\right)=6(1 / 3)+3(1 / 6)$
$=2+\frac{1}{2}=21 / 2$
$f(x)=\frac{x}{6} \quad \mathrm{x}=1,2,3$,

$$
\begin{aligned}
& \mathrm{E}\left(X^{3}\right)=\sum_{x=1,2,3} x^{3} f(x)=\frac{1}{6}(1+16+81)=\frac{98}{6} \\
& \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \quad 0<\mathrm{x}<1,0<\mathrm{y}<1 \\
& \mathrm{E}\left(\mathrm{xy}^{2}\right)=? \\
& \iint^{1} x y^{2} f(x, y) d x d y \\
& \int_{0}^{1} \int_{0}^{1} x y^{2}(x+y) d x d y=\frac{17}{72}
\end{aligned}
$$

Weak Law of Large Number(WLLN)

Let X_{1}, X_{2}, \ldots be a set of independent r.v. distribution in the same form with mean μ.
Let $\overline{X_{n}}$ be the mean of the first n observation.
i.e. $\overline{X_{n}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
then $\overline{\mathrm{X}_{n}}$ who has the mean μ.

The weak law of large numbers states that $\overline{\mathrm{X}_{n}}$ becomes more and more narrowly dispersed about μ as n increase
i.e. $\lim _{n \rightarrow \infty} P\left\{\overline{X_{n}}-\mu \mid>\in\right\}=0 \quad \in>0$
if we assume that the variance of any X exist and equal to 6^{2}
then $v\left(\overline{X_{n}}\right)=\frac{\sigma^{2}}{n}$
chebyshev inequality,

$$
P\left\{\left|\overline{X_{n}}-\mu\right|>\in\right\} \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

or
$P\left\{\left(\bar{X}_{n}-\mu\right)^{2}>\epsilon^{2}\right\} \leq \frac{\sigma^{2}}{n \epsilon^{2}}$
or
$p\left\{\left|\mathrm{X}_{n}-\mu\right|>\in \sigma\right\}=P\left\{\left(\mathrm{X}_{n}-\mu\right)^{2} \geq \epsilon^{2} \sigma^{2}\right\} \leq \frac{1}{\epsilon^{2}}$
$P\left\{\left|\mathrm{X}_{n}-\mu\right|<\in \sigma\right\} \geq 1-\frac{1}{\epsilon^{2}}$
note
$P[g(x) \geq k] \leq \frac{\mathrm{E}(g(x))}{k} \forall k>0$
Theorem: Let $\mathrm{g}(\mathrm{x})$ be a non negative function of a r.v. X. If $\mathrm{E}(g(x))$ exist, then for any
+ve constant \in
$\mathrm{P}[g(x) \geq \in] \leq \frac{\mathrm{E}(g(x))}{\epsilon}$

Proof:

Let $A=\{x: g(x) \geq \in\}$ and let $f(x)$ be the pdf of X, then
$\mathrm{E}(g(x))=\int_{-\infty}^{\infty} g(x) f(x) d x$
$=\int_{\mathrm{A}} g(x) f(x) d x+\int_{\mathrm{A}^{c}} g(x) f(x) d x$
$\mathrm{A}^{\mathrm{c}}=\{x: g(x)<\in\}$
But each integral on the RHS is non -ve then
$\mathrm{E}(g(x)) \geq \int_{A} g(x) f(x) d x$
$\geq \int_{A} \in f(x) d x$
$=\in \int_{A} f(x) d x=\in \mathrm{P}[g(x) \geq \in]$
since $g(x) \geq \in$
i.e. $\frac{\mathrm{E}[g(x)]}{\epsilon} \geq \mathrm{P}[g(x) \geq \epsilon]$
or $\mathrm{P}[g(x) \geq \epsilon] \leq \frac{\mathrm{E}[g(x)]}{\epsilon} \quad \forall \in>0$

Proof of Chebyshev inequality

$\mathrm{P}[g(x) \geq k] \leq \frac{\mathrm{E}(g(x))}{\mathrm{K}}$
Let $g(x)=(X-\mu)^{2}$

$$
\mathrm{K}=\epsilon^{2} \sigma^{2}
$$

i.e $\mathrm{P}\left[(\mathrm{X}-\mu)^{2} \geq \epsilon^{2} \sigma^{2}\right] \leq \frac{\sigma^{2}}{\epsilon^{2} \sigma^{2}}=\frac{1}{\epsilon^{2}}$

Proof of weak law of large number

let $g(x)=\left(\overline{\mathrm{X}}_{n}-\mu\right)^{2}$

$$
\begin{aligned}
& \mathrm{K}=\epsilon^{2} \\
& \mathrm{P}\left(\left(\overline{\mathrm{X}}_{n}-\mu \mid>\epsilon\right)\right.=\mathrm{P}\left[\left(\overline{\mathrm{X}}_{n}-\mu\right)^{2}>\epsilon^{2}\right] \\
& \leq \frac{\mathrm{E}\left(\overline{\mathrm{X}}_{n}-\mu\right)^{2}}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \mathrm{P}\left[\left|\hat{\mathrm{X}}_{n}-\mu\right|>\epsilon\right] \leq \lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \epsilon^{2}}=0$

Note that WLLN can also be stated as
$\mathrm{P}\left\{\left|\overline{\mathrm{X}}_{n}-\mu\right|<\in\right\} \geq 1-\delta$
or
$\mathrm{P}\left[-\in<\overline{\mathrm{X}}_{n}-\mu<\epsilon\right] \geq 1-\delta$
Again using Chebyshev inequality
Let $g(x)=\left(X_{n}-\mu\right)^{2}$ and $k=\epsilon^{2}$
$\left.\mathrm{P}\left[-\epsilon<\overline{\mathrm{X}}_{n}-\mu<\epsilon\right]=\mathrm{P}| | \overline{\mathrm{X}}_{n}-\mu \mid<\epsilon\right]$
$=\mathrm{P}\left[\left|\overline{\mathrm{X}}_{n}-\mu\right|^{2}<\epsilon^{2}\right] \geq 1-\frac{\mathrm{E}\left(\overline{\mathrm{X}}_{n}-\mu\right)^{2}}{\epsilon^{2}}$
$=1-\frac{\left(\frac{1}{n}\right) \sigma^{2}}{\epsilon^{2}} \geq 1-\delta$

Where $\delta>\frac{\frac{1}{n} \sigma^{2}}{\epsilon^{2}}$ or $n>\frac{\delta^{2}}{\delta \epsilon^{2}}$.

Exercise 1:

Suppose that a sample is drawn from some distribution with an unknown mean and variance equal to unity. How large a sample must be taken in order that the probability will atleast 0.95 that the sample mean \bar{X}_{n} will lie within 0.5 of the population mean?

Exercise 2:

How large a sample must be taken in order that you are 99% certain that X_{n} is within 0.56 of μ ?

Strong Law of Large Numbers(SLLN)

The weak law of large numbers state a limiting property of sums of r.v. but the strong law of large numbers state something about the behavior of a sequence, $S_{n}=\sum_{i=1}^{n} x_{i} \quad \forall n$ If $\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots, \mathrm{X}_{\mathrm{n}}$ are independent and identical with finite mean μ,

$$
\frac{S_{n}}{n} \xrightarrow[n \rightarrow \infty]{a . s} \mu \quad \quad \text { (almost surely) }
$$

This is known as the Strong Law of Large Numbers (SLLN).
SLLN implies WLLN.

Central Limit Theorem

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots, \mathrm{X}_{\mathrm{n}}$ be a r.s. from a normal distribution with mean μ and variance σ^{2}, then the r.v.,
$\mathrm{Z}_{n}=\frac{\overline{\mathrm{X}_{n}}-\mu}{\sigma / \sqrt{n}}$
approaches the standard normal distribution as n approaches infinity

$$
\mathrm{Z}_{n} \xrightarrow[n \rightarrow \infty]{ } \mathrm{N}(0,1)
$$

Proof

Note that the moment generating function of a standard normal distribution is given as
$M_{X}(t)=\ell^{\frac{1}{2} t^{2}}$
Let $\mathrm{M}_{\mathrm{Z}_{n}}(t)$ denoted the mgf of Z_{n}. Hence we need to show that $\mathrm{M}_{\mathrm{Z}_{n}}(t) \xrightarrow[n \rightarrow \infty]{ } \mathrm{M}(t)$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{Z}_{n}}(t)=\mathrm{E}\left(\ell^{\mathrm{t} \mathrm{Z}_{n}}\right)=\mathrm{E}\left(\exp t \mathrm{Z}_{n}\right)=\mathrm{E}\left[\exp \left(t \frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{n}}\right)\right] \\
& =\mathrm{E}\left[\exp \left(t \frac{\frac{\sum \mathrm{x}}{n}-\mu}{\sigma / \sqrt{n}}\right)\right]=\mathrm{E}\left[\exp \frac{1}{n} \sum t \frac{\left(\mathrm{X}_{i}-\mu\right)}{\frac{\sigma}{\sqrt{n}}}\right] \\
& =\mathrm{E}\left[\exp \left(\frac{t}{\sqrt{n}} \sum \frac{\mathrm{X}_{i}-\mu}{\sigma}\right)\right]=\mathrm{E}\left[\prod_{i=1}^{n} \exp \left(\frac{t}{\sqrt{n}} \frac{\mathrm{X}_{i}-\mu}{\sigma}\right)\right]
\end{aligned}
$$

Let $y_{i}=\frac{X_{i}-\mu}{\sigma}$
Then $\mathrm{M}_{\mathrm{Z}_{n}}(t)=\mathrm{E}\left[\prod_{i=1}^{n} \exp \left(\frac{t}{\sqrt{n}} y_{i}\right)\right]=\prod_{i=1}^{n} \mathrm{E}\left[\exp \left(\frac{t}{\sqrt{n}} y_{i}\right)\right]$

$$
\begin{aligned}
& =\prod_{i=1}^{n} \mathrm{M}_{y_{i}}\left(\frac{t}{\sqrt{n}}\right)=\prod_{i=1}^{n} \mathrm{M}_{\mathrm{Y}}\left(\frac{t}{\sqrt{n}}\right) \\
& =\left[\mathrm{M}_{\mathrm{Y}}\left(\frac{t}{\sqrt{n}}\right)\right]^{n}
\end{aligned}
$$

But $r^{\text {th }}$ derivative of $\mathrm{M}_{y}\left(\frac{t}{\sqrt{n}}\right)$ evaluated at $\mathrm{t}=0$ gives the $\mathrm{r}^{\text {th }}$ moment about the mean of the density function divided by $(\sqrt{ } n)^{r}$

Note

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{X}}(t)=\mathrm{E}\left(\ell^{t x}\right) \\
& \boldsymbol{e}^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{2}}{3!}+\cdots_{z} \\
& =\sum_{j=0}^{\infty} \frac{x^{j}}{j!} \\
& e^{t x}=1+\frac{t x}{1!}+\frac{\mathrm{t}^{2} x^{2}}{2!}+\frac{\mathrm{t}^{3} x^{2}}{3!}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& M_{Y}\left(\frac{t}{n}\right)=1+\frac{t^{2}}{2 n}+\frac{t^{8} \mu_{3}}{31(\sigma \sqrt{n})^{8}}+\frac{t^{4} \mu_{4}}{41(\sigma \sqrt{n})^{4}}+\cdots \\
& =1+\frac{1}{n}\left[\frac{i}{2}+\frac{t^{3} \mu_{3}}{31 \sigma^{8} \sqrt{n}}+\frac{t^{4} \mu_{4}}{41 n \sigma^{4}}+\cdots\right. \\
& =1+\frac{Q}{n}
\end{aligned}
$$

But $\lim _{n \rightarrow \infty}\left(1+\frac{Q}{n}\right)^{n}=e^{\frac{a}{2}}$

$$
\text { Also } M_{z_{n}}(t)=\left[M_{Y}\left(\frac{t}{\sqrt{n}}\right)\right]^{n}=\left(1+\frac{p}{m}\right)^{n}
$$

$$
\lim _{n \rightarrow \infty} M_{z_{n}}(t)=\lim _{n \rightarrow \infty}\left[M_{Y}\left(\frac{t}{n}\right)\right]^{w}
$$

$$
=\lim _{n-\infty}\left(1+\frac{q}{n}\right)^{n}=e^{\frac{g^{\pi}}{2}}
$$

Which is the same mgf for a standard normal distribution, hence $Z_{n} \xrightarrow[n \rightarrow \infty]{ } \mathrm{N}(0,1)$

$$
\begin{aligned}
& M(\mathrm{t})=E\left[\mathrm{e}^{\mathrm{m}}\right]=1+\frac{\mathrm{tE}(x)}{11}+\frac{t^{2} \mathrm{E}\left(x^{2}\right)}{21}+\frac{t^{9} \mathrm{E}\left(x^{8}\right)}{31}+\cdots, \\
& M^{1}(0)=E(x) \quad M^{11}(0)=E\left(x^{2}\right) \text { a.t.c } \\
& \Rightarrow M_{Y}\left(\frac{t}{n}\right)=1+\frac{t y}{\sqrt{n}}+\frac{t^{2} y^{2}}{2 n}+\frac{t^{2} y^{2}}{3!(\sqrt{n})^{2}}+\cdots, \\
& =1+\frac{t E(x-\mu)}{\sigma \sqrt{n}}+\frac{t^{2} E(x-\mu)^{2}}{2 n \sigma^{2}}+\frac{t^{3} E(x-\mu)^{2}}{3!(\sigma \sqrt{n})^{2}}+\cdots \\
& =1+\frac{t p_{1}}{\sigma \sqrt{n}}+\frac{\mathrm{t}^{2} \mu_{\mu_{2}}}{2 n \sigma^{2}}+\frac{\mathrm{t}^{2}{ }^{2} \mu_{y}}{31(\sigma \sqrt{n})^{3}}+\cdots, \\
& =1+\frac{t \mu_{1}}{\sigma \sqrt{n}}+\frac{t^{2} \mu_{n}}{2(\sigma \sqrt{n})^{2}}+\frac{t^{2} \mu_{9}}{3!(\sigma \sqrt{n})^{2}}+\frac{t^{4} \mu_{4}}{4!(\sigma \sqrt{n})^{4}}+\cdots{ }_{b} \\
& \text { Eut } \mu_{1}=E(X-\mu)=01 \mu_{2}=E(X-\mu)^{2}=ब^{2}
\end{aligned}
$$

Let X be a r.v. with pdf given by $f_{x}(x)=\lambda e^{\mathrm{Av}} \quad \llbracket<\pi<\infty$
find the mgf of X and hence mean and variance of X .

$$
\begin{aligned}
& M_{n}(\mathrm{t})=\mathbb{E}\left(e^{m}\right)=\int_{0}^{w} e^{m w} e^{-a x} d x \\
& =\int_{0}^{\infty} \lambda e^{-(\lambda-t) x} d x=\frac{\lambda}{\lambda-t} \quad \text { for } t<\lambda \\
& M^{\prime}(t)=\frac{\lambda}{(\lambda-t)^{2}} \quad \text { hance } \quad M^{\prime}(0)=E(x)=\frac{1}{\lambda} \\
& M(t)=\frac{2 \lambda}{(\lambda \cdot t)^{2}} \quad \Rightarrow M^{\prime \prime}(0)=E\left(X^{2}\right)=\frac{2}{d^{2}} 1 \sigma^{2}=E^{2}\left(X^{2}\right)-[E(X)]^{2}=\frac{2}{d^{2}}-\left[y^{2}=\frac{2}{d^{2}}\right.
\end{aligned}
$$

Assignment

(a) Find the mgf of the following distributions and hence the mean and variance.

Bernoulli, Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Beta, Normal, Chi-Square.
(b) Suppose $X \sim N(0,1)$

Let $Y=X^{2}$. Find the distribution of Y.
(c) Assume $X_{1}, X_{1}, \ldots, X_{n}$ are i.i.d and distributed as exponential. Find the distribution of $S_{n}=\sum_{j=1}^{n} \mathrm{X}_{i}$

