COURSE CODE: CHM 104
COURSE TITLE: INTRODUCTORY INORGANIC CHEMISTRY
NO OF UNITS:

$$
02
$$

COURSE DURATION: TWO HOURS PER WEEK

COURSE DETAILS:

PART TITLE:
ACID, BASE AND SALT

COURSE CONTENT:

COURSE LECTURER: DR.S.A. AHMED

COURSE REQUIREMENTS:

- concepts of acid and base
- Arrhenius concept
- Brönsted-Lowry concept
- conjugate acid-base pairs
- Lewis concept
- Relative strength of acid and base
- The pH and pO of solutions
- Relationship between pH and pOH
- Water auto ionization
- Numerical problems on pH and DOH
- salt Hydrolysis
- Hydrolysis constant
- Relationship between K_{n}, K_{w} and K_{a}
- Relationship between hydrolysis constants and degree of hydrolysis
- Buffer solution
- Orientation of buffer
- Henderson-Hasselbalch equation

COURSE REQUITBMENIS:

Students are expected to have a minimum of 75% attendance in this course before they could be allowed to write the examination.

READING LIST:

1. Gross, J.M. and Wiseall, B. Principle of physical chemistry. MacDonald and Evans Handbook series, 1972
2. Atkins, P.W. Physical chemístry. Oxford University Press, sixth edition, 1999
3. Bahl, A and Bahl, B.S. Essentials of physical chemistry, S.Chand and Company Ltd. 2007
4. Brown, T.L., Lemay, H.E., Bursten, B.E and Murphy, C.j Chemistry: The central science. Pearson Education, 11 th Edition 2009.
5. Sharma, K.K. and Sharma, L.K. Physical chemístry

LECTURE NOTES
concepts of acid and base
There are three concepts of acids and bases, they are:
(i) Arrhenius concept
(ii) Brönsted-Lowry concept
(iii) Lewis concept

Arrhenius concept

An acid is a compound that releases H^{+}ions in water and a base is a compound that releases OH ions in water.
e.g. HCl is an Arrhenius acid and NaOH is an Arrhenius base

$$
\begin{aligned}
& \mathrm{HCL} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}_{-(\mathrm{aq})} \\
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)}
\end{aligned}
$$

Limitations

(a) Definition limited to water only.
(b) Bases like Ammonia $\left(\mathrm{NH}_{3}\right)$ and basic oxide like Mgo, cao etc are left out in the definition of base.
(c) Free H^{+}and OH do not exist in water.

Brönsted-Lowry concept

An acid is a molecule or ion that can donate a proton $\left(\mathrm{H}^{+}\right)$, A base is a molecule or ion that can accept a proton.
e.g. When HCl gas dissolves in water. Each HCl molecule donates a proton to a water molecule to produce hydronium ion. HCl is a Brousted acid and water is a Brousted base.

NB: More examples and illustrations on this concept shall be treated during the lecture hours.

Conjugate Acid-Base pairs
In an acid-base reaction, the acid (HA) gives up its proton $\left(\mathrm{H}^{+}\right)$and produces a new base (A^{-}). The new base that is related to the original acid is a conjugate base. Similarly, the original base (B^{-}) after accepting a proton $\left(H^{+}\right)$gives a new acid (HB) and it is called a conjugate acid.

In every acid-base reaction involving $H+$ transfer, there are two acid-base conjugate pairs, e.g. reaction between HCl and NH_{3}.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})
$$

Acid

conjugate acid conjugate base

In the example above, HCl (acid) and CL - (conjugate base) constitute one acid-base conjugate pair while NH_{3} (base) and NH_{4}^{+}(conjugate acid) make the second acid-base conjugate pair.
N.B: if the acid of a conjugate acid-base is strong, then the conjugate base will be weak. Therefore, a weak base has a strong conjugate acid and a weak acid has a strong conjugate base.

NB: More examples and illustrations on this concept shall be treated during the lecture hours.

Limitations

1. Neutralization reaction between $M \mathrm{MO}_{(\mathrm{s})}$ and SO_{3} to form MgSO_{4} does not involve proton transfer.
2. Also, reaction between BF_{3} and NH_{3}

Lewis concept of acids and bases
An acid is an electron-pair acceptor and a base is an electronpair donor.
Electron-pair donated by the base is used by the acid to form covalent (or coordinate) bond between the Lewis acid and Lewis base. The resulting combination is called a complex.

NB: More examples and illustrations on this concept shall be treated during the lecture hours.

Relative Strength of Acids and Bases

1. For acid:

The strength of an acid is its tendency/ability to transfer its proton $\left[\mathrm{H}^{+}\right]$to a base to form its conjugate base.

OR
Is the concentration of $\left[\mathrm{H}^{+}\right]$in the aqueous solution of an acid.
When a monoprotic acid (HA) dissolves in water, it transfer its proton to water (a Bronsted base) to form hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a conjugate base.

$$
\begin{equation*}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \tag{1}
\end{equation*}
$$

For simplification, let $\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{H}^{+}$, equ. 1 becomes

$$
\begin{equation*}
\underset{c(1-\alpha)}{\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{ca}^{\mathrm{O}} \rightleftarrows \underset{c \alpha}{\mathrm{~A}^{-}} \mathrm{H}^{+}+{ }_{c \alpha}^{-}} \tag{2}
\end{equation*}
$$

Applying the law of mass action to the acid dissociation equilibrium,

$$
\begin{equation*}
\therefore \quad K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \tag{3}
\end{equation*}
$$

In dilute solution, the concentration of water $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is taken as constant, Ka is the acid dissociation constant and it is a measure of acid strength.

$$
\begin{equation*}
K_{a}=\frac{(c \alpha)(c \alpha)}{c(1-\alpha)}=\frac{c \alpha^{2}}{1-\alpha} \tag{4}
\end{equation*}
$$

N.B: The value of K_{a} is very large for strong acid because [HA] dissociate completely, vice-versa for the weak acid. Also, the concentration of the $\left[\mathrm{H}^{+}\right]$depends on the value of K_{a}.

For weak acids, $1-\alpha \approx 1$

$$
\therefore \quad K_{a}=c \alpha^{2}
$$

For two different acids, say acid 1 and 2, the dissociation constant K_{1} and K_{2} are expressed as
Acid 1:

$$
K_{1}=c \alpha_{1}^{2}
$$

Acid 2:

$$
\begin{equation*}
\kappa_{2}=c \alpha_{2}^{2} \tag{保}
\end{equation*}
$$

Divide equation (i) by ($i i$)

$$
\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{K_{1}}{K_{2}}}
$$

since $\left[\mathrm{H}^{+}\right]$is a measure of acid strength and it depends on the degree of dissociation.

$$
\therefore \quad \frac{\text { strengthofacid }}{1} \text { } \text { strengthofacid }_{2}=\sqrt{\frac{K_{1}}{K_{2}}}
$$

NB: More examples and illustrations on this topic shall be treated during the lecture hours.
2. For bases:

According to Arrhenius model, a base is a substance which produces OH^{-}in aqueous solution.
So,

$$
K_{b}=\frac{\left[B^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B O H]}
$$

K_{b} is the base dissociation constant
The strength of a base is defined as the concentration of OH ion its aqueous solution at a given temperature.

For Bronsted bases which do not conform to the Arrhenius definition of a base e.g. NH_{3} and amines

$$
\begin{gathered}
K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]} \\
K_{b}=\frac{c \alpha^{2}}{1-\alpha}
\end{gathered}
$$

The pH and pOH of solutions
The pH of a solution is defined as the negative of the base-10 logarithm (log) of the H^{+}ion concentration.
i.e. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$where $\left[\mathrm{H}^{+}\right]$is the concentration of the hydrogen ion in moll.
Mathematically,

$$
p H=\log \frac{1}{\left[\mathrm{H}^{+}\right]} \quad \text { OR } \quad\left[\mathrm{H}^{+}\right]=10-\mathrm{PH}
$$

Similarly, pOH of a basic solution is the negative of the base10 logarithm of the OH^{-}concentration.
i.e.

$$
p O H=\log \frac{1}{\left[\mathrm{OH}^{-}\right]}
$$

WATER AUTOIONIZATION
The Bronsted-Lowry theory designates water as an acid in its reactions with bases and as a base in its reactions with acids. This implies that water can react with itself acting both as an acid and a base.

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}+\mathrm{OH}_{(a q)}
$$

In the above reaction, water dissociates to $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{+}ions to a very small degree.

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}
$$

At equílibrium,

$$
\begin{equation*}
K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}} \tag{í}
\end{equation*}
$$

Since water is so little dissociated, the concentration of the molecule, $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is taken to be constant.

$$
\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=K\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{w}
$$

Experimentally, the value of K_{w} at $25^{\circ} \mathrm{C}$ is 1.0×10^{-14}

$$
\begin{aligned}
& \Rightarrow \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OH}]=\sqrt{K_{w}}=\sqrt{1.0 \times 10^{-14}} \\
& \therefore\left[\mathrm{H}^{+}\right]=[\mathrm{OH}]=1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Thus, in pure water, the concentrations of $\left[\mathrm{H}^{+}\right]$and $[\mathrm{OH}]$ are equal at $25^{\circ} \mathrm{C}$ i.e. neutral.
in acidic solution, $\left[\mathrm{H}^{+}\right]>[\mathrm{OH}]$
in basic solution, $\left[\mathrm{H}^{+}\right]<[\mathrm{OH}]$
pH scale is used in expressing the $\left[\mathrm{H}^{+}\right]$or $[\mathrm{OH}] 1$ term of pH for different solution.

$$
\begin{aligned}
& \quad \text { Relationship between pH and pOH } \\
& \text { Recall that pH }=-\log \left[H^{+}\right] \text {and pOH }=-\log [O H] \\
& \text { Similarly, } p K_{w}=-\log K_{w} \\
& \text { so, } K_{w}=\left[H^{+}\right][O H] \\
& \log K_{w}=\log \left[H^{+}\right]+\log [O H] \\
& \text { OR } \\
& -\log K_{w}=-\log \left[H^{+}\right]-\log [O H] \\
& \text { Thus, } p K_{w}=p H+p O H \\
& \text { since } K_{w}=1.0 \times 10^{-14} \\
& p K_{w}=-\log \left(1.0 \times 10^{-14}\right)=14.0
\end{aligned}
$$

N.B: Numerical treatment of problems involving pH, pOH and $p K_{w}$ shall be extensively treated during the lecture hours.

SALTHYDROLYSIS

Hydrolysis is defined as the reaction of water with the conjugate base of a weak molecular acid (anion) or with the conjugate acid of a weak molecular base (cation). in anionic hydrolysis, the solution becomes slightly basic due to the generation of excess OH ions; e.g. the reaction between acetate ion and water.

Also, cationic hydrolysis involves the generation of excess H^{+} which makes the solution slightly acidic; e.g. reaction between ammonium ion and water.

Hydrolysis constant

consider this anionic hydrolysis reaction:

$$
\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftarrows \mathrm{HA}(\mathrm{aq})+\mathrm{OH}_{(a q)}^{-}
$$

The hydrolysis constant, K_{h} can be expressed as

$$
K_{h}=\frac{[H A]\left[O H^{-}\right]}{\left[A^{-}\right]}
$$

For the reverse reaction (i.e. ionization of $H A$),

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftarrows \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

The value of K_{h} for this reaction is the reciprocal of that for ionization of HA because the equation is the reverse of the ionization reaction. (i.e. $\frac{1}{K_{a}}$)

Relationship between $K_{w}, K_{\underline{w}}$ and K_{a}

The hydrolysis constant, K_{n} is related to acid and water dissociation constant K_{a} and K_{w} respectively by the
expression:

$$
K_{h}=\frac{K_{w}}{K_{a}}
$$

From the expression above, it can be seen that the weaker the acid, the greater the hydrolysis constant of the salt.
similarly, for the hydrolysis of the conjugate acid of a weak base is expressed as

$$
K_{h}=\frac{K_{w}}{K_{b}}
$$

The hydrolysis constant for salts of weak acid and weak base is given by

$$
K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}
$$

Relationship between hydrolysis constant and degree of hydrolysis
The degree of hydrolysis is the fraction of the salt which has undergone hydrolysis when equilibrium is established. It is represented by α. The degree of hydrolysis for salt of weate base and strong acid is given by

$$
\alpha=\sqrt{\frac{K_{w}}{K_{h} \times C}}
$$

similarly, the degree of hydrolysis of salt of weak acid and weak base is given by

$$
\alpha=\sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}
$$

N.B: Examples and problems related to this topic shall be treated during the lecture hours.

BUFFER SOLUTION

A buffer solution is a solution which maintains its pH fairly constant even upon the addition of small amounts of acid or base.
Two common types of buffer solutions are:
(i) Acid buffers-formed by a weak acid and its salt with a strong base. e.g. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(ii) Basic buffer-formed by a weak acid and its salt with a strong base. e.g. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$

operation/action of Buffer

consider this acid buffer: $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \tag{亡}\\
& \mathrm{CH}_{3} \mathrm{COONa} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+} \tag{ii}
\end{align*}
$$

since the salt is completely ionized, it provides the common ions $\mathrm{CH}_{3} \mathrm{COO}^{-}$in excess. The common-ion effect suppresses the ionization of the acetic acid. This reduces the concentration of H^{+}ion thereby raising the pH of the solution.

N.B: Diagrams and other illustrations on this topic shall be
 provided during the lecture hour.

Henderson-Hasselbalch Equation

The pH of the buffer solutions can be calculated using the Henderson-Hasselbalch equation as expressed below

$$
p H=p K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]} \quad \text { For acíd buffers }
$$

And

$$
p H=p K_{b}+\log \frac{[\text { salt }]}{[\text { base }]} \quad \text { For basic buffers }
$$

N.B: Numerical treatment of problems involving buffer solutions shall be treated during the lecture hours.

