COURSE CODE: CHM 101

COURSE TITLE: INTRODUCTORY PHYSICAL CHEMISTRY
NO OF UNITS: 03
COURSE DURATION: THREE HOURS PER WEEK
COURSE DETAILS:
PART TITLE: CHEMICAL EQUILIBRIUM
COURSE LECTURER: DR.S.A. AHMED
COURSE CONTENT:

The concept of equilibrium

- Equílibríum Law (Law of Mass action)
- Relationship between K_{p} and K_{c}
- Relationship between ΔG and K
- Effect of temperature on the equilibrium constant.
- Homogenous chemical equílibría
- Heterogeneous equílíbría system
- Factors affecting equílibríum constants
- chemical equilibrium in solution
- water dissociation constant
- hydrolysis and hydrolysis constant
- Solubility equílíbría
- common-ion effects

COURSE REQUIREMENTS:
Students are expected to have a minimum of 75% attendance in this course before they could be allowed to write the examination.

1. Gross, J.M. and Wiseall, B. Príncíple of physical chemistry. MacDonald and Evans Handbook series, 1972
2. Atkins, P.W. Physical chemístry. Oxford University Press, sixth edition, 1999
3. Bahl, A and Bahl, B.S. Essentials of physical chemistry, S.Chand and company Ltd. 2007
4. Brown, T.L., Lemay, H.E., Bursten, B.E and Murphy, C.j chemistry: The central science. Pearson Education, 11 th Edition 2009.
5. Sharma, K.K. and Sharma, L.K. Physical chemístry

LECTURE NOTES
Lecture 1
concept of Equilibrium
consider this direct reaction,

$$
a A+b B \quad \rightarrow \quad c C+d D
$$

The reaction stops when the reactants are used up.
However, for a reversible reaction like this
$a A+b B \quad c C+d D$
the equilibrium is attained when the rate of forward reaction is equal to the rate of backward reaction.
chemical equilibrium is the state of a reversible reaction when the two opposing reactions occur simultaneously.

At equilibrium, the concentrations of reactants and products do not change with time.

The Equilibrium Law (Law of Mass action)
The law states that "at constant temperature, the rate at which a substance reacts is directly proportional to the active masses of the reactant"

Active mass is a thermodynamic quantity and it is expressed $a=f c$, where a-active mass, f-activity co-efficient (fugacity), c-molar concentration.

For ideal gaseous and solution reaction, $f=1$.
Therefore, the active mass is equal to molar concentration.
According to the law, $R_{f} \alpha[A]^{a}[B]^{b}$

$$
\Longrightarrow \quad R_{f}=K_{f} \quad[A]^{a}[B]^{b}
$$

Also, $\quad R_{b} \alpha[C]^{c}[D]^{d}$
$\Rightarrow \quad R_{b}=K_{b}[C]^{c}[D]^{d}$
At equilibrium, $K_{f} \quad[A]^{a}[B]^{b}=K_{b} \quad[C]^{c}[D]^{d}$

$$
\frac{K_{f}}{K_{b}}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}=K_{c}
$$

K_{c} is the equilibrium constant in term of concentration, in term of activities,

$$
K_{A}=\left\{\frac{\left(a_{C}\right)^{c}\left(a_{D}\right)^{d}}{\left(a_{A}\right)^{a}\left(a_{B}\right)^{b}}\right\},
$$

The concept of activity addresses the deviation from ideal behaviour. Therefore, it can be defined as an idealized concentration. K_{A} is exact and does not depend on pressure.

In term of pressure,

where $P_{A}^{a}, P_{B}^{b}, P_{C}^{c}$ and $P_{D}{ }^{d}$ are the partial pressure of various gaseous species at equilibrium.

Relationship between K_{p} and K_{c}

In a gaseous reaction, the concentration of the gases at any given temp is expressed in term of their partial pressures.
consider this gaseous reaction
$a A_{(g)}+b B_{(g)} \rightleftarrows c C_{(g)}+d D_{(g)}$,
the equilibrium constant in term of pressure is expressed as

$$
K_{p}=\frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}} \quad \text { where } P_{A}^{a}, P_{B}^{b}, P_{C}^{c} \text { and } P_{D}^{d} \text { are the }
$$

partial pressure of various gaseous species at equílibrium.
However, K_{p} and K_{c} are not numerically equal, the relationship can be derived as follow

For an ideal gases,

$$
P V=n R T
$$

$$
\Rightarrow \quad P=\frac{n}{V} R T
$$

$$
\text { But } \frac{n}{V}=c
$$

$\therefore \quad P=C R T$

$$
K_{p}=\frac{C_{C}^{c}(R T)^{c} C_{D}^{d}(R T)^{d}}{C_{A}^{a}(R T)^{a} C_{B}^{b}(R T)^{b}}
$$

$$
=\frac{C_{C}^{c} C_{D}^{d}(R T)^{(c+d)}}{C_{A}^{a} C_{B}^{b}(R T)^{(a+b)}}
$$

Recall that
\therefore

Where $\Delta n=(c+d)-(a+b)$ i.e change in the amount of gaseous reagents

When Δn is positive, \Rightarrow the number of molecules of products are larger than those of the reactants i.e $K_{p} \succ \mathrm{~K}_{c}$ When Δn is zero, \Rightarrow the number of molecules of products $=$ the number of molecules of the reactants i.e $K_{p}=K_{c}$

When Δn is negative, \Rightarrow the number of molecules of products are smaller than those of the reactants i.e $K_{p} \prec \mathrm{~K}_{c}$

If the equilibrium constant is expressed in term of mole fractions, X it is related to K_{p} by

$$
\begin{gathered}
K_{p}=\frac{\left(X_{C} P\right)^{c}\left(X_{C} P\right)^{d}}{\left(X_{A} P\right)^{a}\left(X_{B} P\right)^{b}} \\
K_{p}=\left(\frac{\left(X_{C}\right)\left(X_{D}\right)}{\left(X_{A}\right)\left(X_{B}\right)}\right) \times P^{(c+d)-(a+b)} \\
\quad \therefore \quad K_{p}=K_{x} P^{\Delta n} \\
\text { where } \Delta n=(c+d)-(a+b)
\end{gathered}
$$

Relationship between Δ Gand the equilibrium constant
The change in free energy of a reaction and the equilibrium constant K are related to each other by the expressions

$\Delta \mathrm{G}^{o}=-R T \ln K$

Temperature dependence on the equilibrium constant

The value of equilibrium constant varies with temperature change. The relationship between the equilibrium constants at two different temperatures and the enthalpy change is given by

Where $K_{p_{2}}$ and $K_{p_{1}}$ are the equilibrium constants at temperature T_{2} and T_{1} respectively.

In terms of change in internal energy $\left(\Delta E^{\circ}\right)$, the equation becomes

HOMOGENOUS CHEMICAL EQUILIBRUM

Homogenous equilibrium is an equilibrium in which the reactants and the products are in the same phase.

- Homogenous gaseous equílíbría
case 1: The Hydrogen-lodide system consider a reaction
$A+B \rightleftarrows 2 C$
e. 9
$H_{2(g)}+I_{2(g)}$
$\rightleftarrows 2 \mathrm{HI}_{(g)}$
$t=0$
a
b
$t=t \quad a-x \quad b-x \quad 2 x$
if V (in dm^{3}) is the total volume of the reaction mixture
then, $\frac{a-x}{V} \quad \frac{b-x}{V} \quad \frac{2 x}{V}$

Hence,

$$
K_{c}=\frac{[H I]^{2}}{\left[H_{2}\right]\left[I_{2}\right]}=\frac{(2 x / V)^{2}}{\left(\frac{a-x}{V}\right)\left(\frac{b-x}{V}\right)}
$$

K_{c} is independent of the volume
in term of partial pressure,

$$
K_{p}=\frac{P_{C}^{2}}{P_{A} \times P_{B}}
$$

But $\quad P_{A}=\frac{n_{A}}{N} \times P, \quad P_{B}=\frac{n_{B}}{N} \times P$ and $P_{C}=\frac{n_{C}}{N} \times P$
Where $\quad N=n_{A}+n_{B}+n_{C}=$ total number of moles,
$P=$ total (external) pressures $P_{A}, P_{B} \& P_{C}$ are partial pressures of A, B and C respectively.

Examples:

1. A mixture of 1 mole of H_{2} and 1 mole of i_{2} in a flask was heated until the equilibrium is reached. On analysis, the equilibrium mixture is found to contain 0.7 mole of HI . calculate the K_{0}
2. Consider this reaction $H_{2(g)}+I_{2(g)} \rightleftarrows 2 H_{(g)}$ Given that the partial pressures of the following substances at $45^{\circ} \mathrm{C}$ are $P_{\mathrm{H}_{2}}=0.065 \mathrm{~atm}, P_{\mathrm{I}_{2}}=0.45$ atm. and $P_{H I}=0.245 \mathrm{~atm}$. Calculate (a) the equilibrium constant K_{p} for the reaction at $45^{\circ} \mathrm{C}$ (b) the equilibrium constant κ_{p} for the backward reaction
3. K_{c} for this reaction $\mathrm{SO}_{2(g)}+1 / 2 \mathrm{O}_{2(g)} \rightleftarrows \mathrm{SO}_{3(g)}$ at $727^{\circ} \mathrm{C}$ is 16.7, calculate K_{p} for this reaction at $727^{\circ} \mathrm{C}$.
N.B-Solutions to these examples shall be treated during the lecture hours

Exercises:

1. The K_{p} for this equilibrium reaction: $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \rightleftarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}$ is 0.11 at $25^{\circ} \mathrm{C}$, calculate K_{c} at this temperature.
2. The following results were obtained during analysis of a reaction $\mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \rightleftarrows \mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$
3. At $25^{\circ} \mathrm{C}$ and 4 atm., $P C l_{5}$ is 10% dissociated, calculate the K_{p} for this reaction, $P C l_{5(g)} \rightleftarrows P C l_{3(g)}+C l_{2(g)}$
case 11: $A \quad 2 B$
e.g. Decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$, i.e $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftarrows 2 \mathrm{NO}_{2}$

$$
\begin{gathered}
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(2 x / V)^{2}}{\left(\frac{a-x}{V}\right)} \\
\therefore \quad K_{c}=\frac{4 x^{2}}{(a-x) V}
\end{gathered}
$$

in term of K_{p},

$$
K_{p}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}
$$

Also, while considering the equation, if x represent the degree of dissociation, then $2 x$ of NO_{2} will be produced, then 1-x of $\mathrm{N}_{2} \mathrm{O}_{4}$ will be left. then, the total number of moles present at equílibrium $=(1-x)+2 x=1+x$.
$\therefore P_{\mathrm{N}_{2} \mathrm{O}_{4}}=\left(\frac{1-x}{1+x}\right) P_{\&} P_{\mathrm{NO}_{2}}=\left(\frac{2 x}{1+x}\right) P$

$$
\begin{array}{ll}
& K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{\left[\left(\frac{2 x}{1+x}\right) P\right]^{2}}{\left(\frac{1-x}{1+x}\right) P} \\
\text { So, } \\
\therefore \quad & K_{p}=\frac{4 x^{2} P}{1-x^{2}}
\end{array}
$$

Examples:

1. $\mathrm{N}_{2} \mathrm{O}_{4}$ at 1 atm and $25^{\circ} \mathrm{C}$ dissociated by 18.5%, calculate its K_{p} at this temperature. If the atmospheric temperature was reduced to halfits original value at the same temperature, calculate the degree of dissociation of the gas.
2. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $30_{0} \mathrm{C}$ and 1 atm., calculate (a) The equilibrium constant for the decomposition
(b) The amount of NO_{2} that would be attained if there had been 4 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ at the same temperature and pressure.
N.B-Solutions to these examples shall be treated during the lecture hours

Exercises:

1. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $37^{\circ} \mathrm{C}$ and 1 atm., calculate (i) The K_{p} and (ii) the $\%$ dissociation at 0.1 atm and $37^{\circ} \mathrm{C}$
2. An equilibrium mixture at $27^{\circ} \mathrm{C}$ contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} having 0.28 atm. and 1.1 atm . pressures respectively. If the volume of the container is doubled, calculate the new equilibrium pressure of the gases.
case 111:

$$
A+3 B \quad \rightleftarrows \quad 2 C
$$

e.g. synthesis of Ammonia

$$
\begin{array}{cc}
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} & \rightleftarrows 2 \mathrm{NH}_{3(g)} \\
\frac{a-x}{V}-\frac{b-x}{V} & \frac{2 x}{V}
\end{array}
$$

$$
K_{c}=\frac{\left[N_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}=\frac{(2 x / V)^{2}}{\left(\frac{a-x}{V}\right) \times\left(\frac{b-x}{V}\right)^{3}}
$$

Also,

Examples:

1. In an experiment, H_{2} and N_{2} in the mole ratio $3: 1$
produced 0.0735 mole fraction of NH_{3} at $350^{\circ} \mathrm{C}$ and total pressure of $1013 \mathrm{KNm}^{-2}$. Calculate Kp for the forward and reverse reactions
2. The K_{p} for this equilibrium reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g}) \text { is } 1.45 \times 10^{-5}
$$

at $500^{\circ} \mathrm{C}$. Calculate the partial pressure of NH_{3} when the partial pressure of H_{2} is 0.928 atm and that of N_{2} is 0.432 atm.

Exercise:

1. The dissociation pressure of CaCO_{3} is 342 mmHg at $840^{\circ} \mathrm{C}$ and at $860^{\circ} \mathrm{C}$, the dissociation pressure is $420 \mathrm{mmH} H$. Calculate the heat of dissociation of the carbonate. Given that $R=8.314 \mathrm{KJmol}^{-1}$.
2. consider this reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The K_{p} is 1.64×10^{-4} at $400^{\circ} \mathrm{C}$. calculate (i) the Δc_{1} of the reaction (ii) Δc_{1} when the partial pressure of N_{2}, H_{2} and NH_{3} are $10 \mathrm{~atm}, 30 \mathrm{~atm}$ and 3 atm respectively.

LECTURE 2
HOMOGENOUS (LIQUID) EQUILIBRIA

$A_{(L)}+B(L)$	$\rightleftarrows C(l)+D(l)$		
$e . g \cdot \mathrm{CH}_{3} \mathrm{COOH}_{(L)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(L)$	\rightleftarrows	$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}_{(L)}$	
$t=0$	a	b	0
$t=t$	$a-x$	$b-x$	x

$$
K_{c}=\frac{\left(\frac{x}{V}\right) \times\left(\frac{x}{V}\right)}{\left(\frac{a-x}{V}\right) \times\left(\frac{b-x}{V}\right)}
$$

$K_{c}=\frac{x^{2}}{(a-x)(b-x)}$

The equation above is the general expression for the liquid equilibria. However, in the example above where water molecule is involved, the expression can be written as

$$
K_{c}=\frac{\left[\mathrm { CH } _ { 3 } \mathrm { COOC } _ { 2 } \mathrm { H } _ { 5 } \left[\left[\mathrm{H}_{2} \mathrm{O}\right]\right.\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

The above expression is written in term of K_{c}^{\prime} because the concentration of water is taken to be constant, K_{c}^{\prime} has the unit of $[\text { Concn }]^{-1}$ but K_{c} has no unit. Example:

1. In an esterification process between 1 mole of ethanoic acid and 1 mole of ethanol at $25^{\circ} \mathrm{C}, 66.7 \%$ of the acid is esterified calculate the equilibrium constant and Δc^{0}.
2. When 1 mole of ethanoic acid and 1 mole of ethanol were heated together at a temperature of $25^{\circ} \mathrm{C}$ until the equilibrium is reached. Titration of the reaction mixture shows that $2 / 3$ of the acid have been used up. Calculate the equilibrium constant.

HETEROGENEOUS EQUILIBRIA SYSTEM

Heterogeneous equilibrium is an equilibrium in which the reactants and the products are not in the same phase.
e.g. $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$

$$
K_{c}=\frac{\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\left[\mathrm{H}_{2}\right]^{4}\right.}{[\mathrm{Fe}]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}=\frac{1 \times\left[\mathrm{H}_{2}\right]^{4}}{1 \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}=\frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}
$$

N.B: the concentration of substances in solid phase is taken to be unity.

In term of K_{p},

$$
K_{p}=\frac{P_{H_{2}}^{4}}{P_{H_{2} \mathrm{O}}^{4}}
$$

Exercises: Express the equilibrium constants K_{p}, for the following reactions.

1. $\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftarrows \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
2. $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
3. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \quad \rightleftarrows \quad \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}_{(\mathrm{g})}$

Le-Chatelier's Princíple
It states that "if a chemical system is in equilibrium and one of the factors involved in the equilibrium is altered, the equilibrium will shift, so as to neutralize the effect of the change".

FACTORS AFFECTINGEQUILIBRIUM

The factors are: temperature, concentration and pressure of the reactants and products, catalyst.
N.B: catalyst does not change the position of equilibrium, but affects the reaction equally in both directions.

1. Effect of temperature changes on equilibrium mixture: if a chemical system is in equilibrium and the temperature is lowered, the equilibrium position according to Le-chatelier's Principle will shift so as to neutralize the cooling effect by releasing more heat. conversely, if the temperature is raised, the equilibrium position will shift so as to neutralize the heating effect by absorbing more heat.
e.g.

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=+\mathrm{ve}
$$

since the forward reaction is an endothermic, if the temperature is raised, more steam will be produced and the equilibrium position will shift to the right. On the other hand, if the temperature is lowered, the equilibrium position shifts to the left and more water will be formed as the steam condenses.

The table below summarises the effect of temperature change on the equilibrium position.

Reversible reactions where When the temp. of equilibrium system

3. Effect of temperature changes on equilibrium mixture: This effect occurs in gaseous state reactions in which the total numbers of moles of gaseous molecules on the left hand side of the equation differ from that on the right hand side of the equation.
When the pressure of a system at equilibrium is increased, then the reaction that involves a reduction in pressure will be favoured. This is in line with the Le-chatelier's principle. conversely, if the pressure is lowered for a system at equilibrium, the reaction that will increase the pressure will be favoured.
e.g

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) & \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
4 \text { moles } & 2 \text { moles }
\end{aligned}
$$

The forward reaction involves a decrease in the number of moles and hence, a decrease in the pressure of the system. Also, the backward reaction gives an increase in the number of moles, and hence an increase in the pressure of the system.

In the formation of ammonia, a high pressure will favour the forward reaction (where a reduction in volume occurs). This causes the equilibrium position to shift to the right. on the other hand, a low pressure will cause the equilibrium position to shift to the left, favouring the backward reaction.
The table below summarises the effect of a change in pressure on the equilibrium position.

$N B$: the value of K remain constant irrespective of the shift in the equilibrium posítion.

Effect of temperature changes on equilibrium mixture: if the concentration of any of the substances present is changed without a change in any of the other conditions. According to Le-chatelier's principle, the equilibrium position will move to increase the concentration of the added substance.
e.g. $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Longleftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$

The addition of more reactants (either N_{2} or O_{2} or both) will upset the equilibrium. For the system to adjust, the equilibrium position will shift to the right thereby favourig
the forward reaction. This results in a proportional increase in the concentration of the product.
similarly, if the product formed is continually removed fom the system, the equilibrium position will shift to the right to produce more of the product.

The effect of concentration change on equilibrium can be summarise in the table below

Reversible reactions	Addition of reactants or removal of products	removal of reactants or addition of products
$\mathrm{CaCO}_{3(\mathrm{~g})} \rightleftarrows \mathrm{CaO}_{2(\mathrm{~g})}+\mathrm{CO}_{2}(\mathrm{~g})$		
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$		
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2(\mathrm{~g})}$	Equilibrium position shifts to the right	Equilibrium position shifts to the left

$N B$: the value of K remain constant irrespective of the shift in
the equilibrium position.
4. Effect of catalyst: Addition of catalyst has no effect on either the equilibrium constant or shift. It only speed up the rate at which the equilibrium is reached.

LECTURE III

CHEMICAL EQUILIBRIUM IN SOLUTION

a. Dissociation of water:

$$
K=\frac{\left[H^{+} \llbracket O H^{-}\right]}{\left[H_{2} O\right]}
$$

But $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ constant
$\therefore K_{w}=\left[H^{+} \| \mathrm{OH}^{-}\right]=1 \times 10^{-14}$
K_{w} is the water dissociation constant.

Examples

1. Calculate the $[\mathrm{OH}-]$ of the 0.01 M HCL
2. Calculate the $\left[H^{+}\right]$of the 0.0001 M NaCl
(b). Hydrolysis and hydrolysis constant
when a salt of a strong acid and a strong base dissolved in water, the water remains neutral. However, when a salt
formed from a strong acid and a weak base or vice versa is dissolved in water, it either make the water acidic or basic.
e.g. (a) salt of strong base-weak acid like sodium ethanoate
$\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ react with water to give an alkaline solution. $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}+\mathrm{OH}^{-}$

As the $\mathrm{CH}_{3} \mathrm{COO}$-consume the H^{+}from water to form ethanoic acid, more of the water molecules dissociate to produce more of their ions.

At equilibrium,

$$
K_{a}=\frac{[H E t]\left[\mathrm{OH}^{-}\right]}{\left[E t^{-}\right]\left[H_{2} O\right]}
$$

But

$$
\frac{[\mathrm{HEt}]\left[\mathrm{OH}^{-}\right]}{\left[E t^{-}\right]}=\left[H_{2} \mathrm{O}\right] K_{a}=K_{h}
$$

K_{h} is the hydrolysis constant, but $K_{w}=\left[H^{+} \llbracket \mathrm{OH}^{-}\right]$
$\therefore \quad[\mathrm{OH}]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{K_{w}}{K_{a}}$
The hydrolysis constant K_{n} is related to the aci dissociation constant by the expression

The degree of hydrolysis, $\boldsymbol{\alpha}$, is the fraction of the salt which has undergone hydrolysis when equilibrium is reached and it is given by

$$
\boldsymbol{\alpha}=\sqrt{\frac{K_{w}}{K_{h} \times C}}
$$

(b). salt of weak base-strong acid, e.g $\mathrm{NH}_{4} \mathrm{Cl}$.

$$
\begin{aligned}
& \mathrm{NH}_{4(a \mathrm{aq})}++\mathrm{H}_{2} \mathrm{O}_{(\text {aq) }} \rightleftarrows \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{(a \mathrm{aq})}^{+} \\
& \therefore K_{h}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \\
& \quad \text { but }\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}
\end{aligned}
$$

c. Salt of weak acid-weak base, e.g $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ $\mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{Et}^{-}{ }_{(\mathrm{aq})} \rightleftarrows \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{HEt}(\mathrm{aq})$
The hydrolysis constant is given by

$$
K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}
$$

and the degree of hydrolysis is given by

Solubility Product

When a sparingly soluble salt e.g AgCl dissolves in water at a given temperature, a stage will be reached when it will not dissolve further and both the solid and and solution will coexist in equílibríum.

$$
\begin{aligned}
& \mathrm{AgCl}_{(a q)} \quad \rightleftarrows \quad \mathrm{Ag}^{+}(a q)+\mathrm{Cl}_{(a q)}^{-} \\
& K=\frac{\left[A^{+} \llbracket \mathrm{Cl}^{-}\right]}{[\mathrm{AgCl}]} \\
& \therefore \quad K[A g C l]=\left[A g^{+} \mid C l^{-}\right]=K_{s p}
\end{aligned}
$$

Examples

1. calculate the hydrolysis of a base whose dissociation constant is 1.75×10^{-5}.
2. The solubility of CuBr is found to be $2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. calculate $K_{s p}$ value for cuBr.
3. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ is $0.00764 \mathrm{~g} / \mathrm{L}$. What is the value of $K_{s p}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$?

Exercises

1. calculate the $K_{s p}$ of AgCl whose solubility at $25^{\circ} \mathrm{C}$ is $1.05 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.
2. The solubility of BaSO_{4} at $18^{\circ} \mathrm{C}$ is $0.00233 \mathrm{~g} / \mathrm{L}$. What is the value of $K_{s p}$ for BaSO_{4} ?
common-ion Effect

When a soluble salt (say, $A^{+} C^{-}$) is added to a solution of another salt $\left(A^{+} B^{-}\right)$containing a common ion $\left(A^{+}\right)$, the dissociation of $A B$ will be suppressed.
$A B \quad \rightleftarrows \quad A^{+}+B^{-}$
By the addition of the salt ($A C$), the concentration of A^{+} increases. In line with the Le-chatelier's principle, the equilibrium will shift to the left, thereby decreasing the concentration of A^{+}(i.e the degree of dissociation of $A B$ will be reduced).
Thus, the reduction of the degree of dissociation of a salt by the addition of a common-ion is called the common-ion effect.

Examples

1. calculate the $\left[\mathrm{H}^{+}\right]$when 0.1 mol acetic acid was treated with 0.2 mol acetate ion. The equilibrium constant is 1.8×10^{-5}.
2. calculate the $\left[\mathrm{H}^{+}\right]$when 1 mol of sodium formate was added to 0.5 mol formic acid. Given that $K=1.8 \times 10^{-5}$.
