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     SECTION A 
 
    INTRODUCTION 
 
Quantum mechanics is a clear replacement of classical mechanics. Plank in 1990 showed that 
the description of the distribution of energies of electromagnetic radiation in a cavity requires 
the quantization of energy. Modern Chemistry relies on quantum mechanics for the 
description of most phenomenons. In the beginning of twentieth century, a number of 
experimental observations were made that could not be reconciled or explained by the laws of 
classical physics. E.g. Plank measured the emission of radiation from a hot mass (called 
blackbody radiation) and found that it did not fit the formula derivation from classical 
physics. To derive the right equation, he had to assume in contrast to classical physics ideas 
that radiation of frequency (�) is absorbed and emitted only in multiples of h� where h is a 
universal constant. 
In another experiment, it was discovered that the energy of an electron ejected from metals by 
the absorption of radiation (the photoelectric effect) depended only on the frequency of the 
radiation and not on intensity, again in contrast with classical ideas. Einstein in 1905 
explained this by suggesting that light of frequency (�) consists of quanta of energy h�, 
called Photons. When one Photon strikes an electron in the metal, the electron is ejected with 
a kinetic energy that is, the difference between the energy of the photon and the minimum 
energy needed to eject the electron. 
In 1911, Rutherford showed that an atom has all its positive charge in a tiny nucleus with the 
electrons surrounding it, but this could not be understood using classical mechanics which 
predicted that the electrons would radiates energy and fall into the nucleus. 
Bohr in 1913 postulated the existence of stable orbits in atoms and the quantization of 
angular momentum which marks the beginning of quantum mechanics applied to atoms, but 
was unable to describe atoms with more than one electron. 
The underlying problem that emerged from these and other experiments was that 
electromagnet radiation shows properties that are both wavelike and particle-like. 
Experiments showing the interference of light must be explained with wave theory whereas 
that of photoelectric effect reveals particlelike principles. 

LECTURE NOTES 



De Broglie in 1924 developed an equation for the wavelength of a particle by reasoning in 
terms of light. In 1926 Schrodinger published the wave equation for atomic and molecular 
systems. In 1927 Heisenberg put forward an uncertainty principle implying that if the 
momentum of a particle is known precisely, the position of that particle is completely 
unknown. This is the new mechanics called quantum mechanics,  It challenged classical 
mechanics which states that the position and momentum of a particle can be calculated 
precisely at all times from knowledge of the forces on the particle. Photons which have 
energies given by E = h� are usual particles in that they have zero rest mass and travel with 
the speed of light. However, Einstein suggested that photons have a relative mass given by 
E= mc2. Equating these two equations for the energy of a photon yields. 
 E = mc2 = hv = hc/λ or E = mc2 = P = hc/λ................................................... [1] 
Where P = momentum of photon. 
By analogy de Broglie [1924] suggested that the momentum of a particle with finite rest mass 
is given by mv = P = h /λ or λ= h /p = h /mv................................. [2] 
Where m = rest mass 
     V= velocity and V = P /m......................................................................... [3] 
Equation [2] shows that all particles have a wavelike property with wavelength that is 
inversely proportional to the momentum. 
The energy of an electron is given as the product of elementary charge (e) and potential 
difference in Joules and the energy of an electron of mass (m) moving with a velocity v well 
below the velocity of light is given by  
E = (½)mv2 = P2/2m..............................................................................................[4] 
Total Energy of a Particle 
The total energy E of a particle is equal to the sum of its kinetics energy ((½)mv2) and its 
potential energy V. 
E = (½)mv2 + V = P2/2m +V  ..................................................................................(5) 
 
 
The Heisenberg uncertainty principle 
In 1927, Heisenberg formulated his principle that values of particular pairs of observables 
cannot be determined simultaneously with arbitrarily high precision in mechanics. Examples 
of pairs of observables that are restricted in this way are momentum and position, and energy 
and time; such pairs are referred to as ‘complementary’. 
The quantitative expressions of the Heisenberg uncertainty principle can be derived by 
combining the de Broglie relation P = h/λ and the Einstein relation E = h� with properties of 
all waves. 
The de Broglie wave for a particle is made up of a super position of an infinitely large 
number of waves of the form 
Ψ(x,t) = A sin 2π(x/λ – �t) 
         = A sin 2π(kx – �t).................................................................. (6)  
Where A is amplitude and k is the reciprocal wavelength .Let’s consider one spatial 
dimension for simplicity. The waves that are added together have infinitesimal different 
wavelengths. This superposition of waves produces a wave packed as shown below: 
Figures (a) and (b) 
By the use of Fourier integral methods, it is possible to show that for wave motion of any 
type 
∆x ∆k = ∆x ∆1/λ ≥ 1/4π..................................................................... (7) 
And ∆t ∆� ≥ 1/4π............................................................................ (8) 



Where ∆x is the extent of the wave packed in space, ∆k is the range in reciprocal wavelength, 
∆v is the range in frequency, and ∆t is a measure of the time required for the packed to pass a 
given point. 
Note that the ∆’s are actually standard deviations if at a given time the wave packed extends 
over a short range of x values; there is a limit to the accuracy with which we can measure the 
wavelength. If a wave packed is of short duration, there is a limit to the accuracy with which 
we can measure the frequency. 
One form of the Heisenberg uncertainty principle may be by substitution the de Broglie 
relation in equation [7]. Since 1/λ =Px/h for motion i x direction, then by substitution, 
∆x ∆Px/h ≥ 1/4π............................................................................. (9) 
And ∆Px  ≥ h/4π∆x....................................................................... (10) 
∆x ∆Px = ≥ ħ/2............................................................................... (11) 
Where ħ = h/2π and it is called ‘’h bar’’ 
The limitation to determine the simultaneous position and momentum of an electron is well 
understood. To determine the position of the electron at least photon would have to strike the 
electron, and momentum of the electron would inevitably be after in the process. This would 
definitely limit our ability to measure the momentum. If we use a photon of shorter 
wavelength to determine the position of the electron more accurately, the disturbance of the 
momentum is greater and ∆px is greater according to equation [11]. This same uncertainty 
applies to ∆y∆py and ∆z∆pz. 
Another form of the Heisenberg uncertainty principle may be derived by substituting E = hr 
in equation [8]. 
These yields: 
∆t ∆E/h ≥1/4π............................................................................................ [12] 
∆t∆E ≥ ħ/2................................................................................................... [13] 
The Schrödinger equation 
The time independent Schrödinger equation is written as: 
-(h2/8π2m)(d2/dx2 + d2/dy2 + d2/dz2)Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z) 
Or where Ψ = wave function in three dimention............................................... (14) 
-(h2/8π2m)     2 Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z)............................................. (15) 
      2 = del square = (d2/dx2 + d2/dy2 + d2/dz2)  
The time independent Schrödinger equation provides a means for calculating the wave 
function 4 for a quantum mechanical particle, and the probability density is given by the 
product of the wave function with its complex conjugate. 
Note that the probability of finding the particle between x and x+dx is given by Ψ*(x)Ψ(x)dx 
where Ψ* is the complex conjugate of Ψ (The complex conjugate is found by changing i to 1 
everywhere in Ψ). This means that Ψ*(x)Ψ(x) is a probability density. 
For example, if Ψ is a complex number, it can be written as a+ib then Ψ* = a+ ib and Ψ*Ψ = 
a2+b2, which is clearly positive and real. We often write (Ψ)2 for Ψ*Ψ. With the interpretation 
of Ψ; the probability of finding the particle between x1 and x2 is probability  
(x1≤ x ≤ x2) = ∫ Ψ*(x)Ψ(x)dx....................................................................................................... 
(16) and since the probability of finding the particle anywhere on the x-axis must be 1. 
(-∞ ≤  x ≤  + ∞) = ∫ Ψ*(x)Ψ(x)dx = 1 in one dimension ......................................................(17) 
For this one-dimensional example, the units of  Ψ are m-1/2 to ensure that the probability is a 
pure number. If we were in considering a 3-dimentional system, the integral of (Ψ)2 over 3-
dimentional would be the probability of finding the particle anywhere in the space, which is 
1. 
Then the wave function would have unit’s’ m-3/2. 
An atom or a molecule can be in any one of the stationary energy states e.g. nth, represented 
by its own wave function Ψn with energy En. 



The wave function contains all the information we can have about a particle in quantum 
mechanics.  
However for (Ψ)2 to be a probability density, all the 4’s must be ‘well behaved’ that is, have 
certain general properties. 
[a] They are continuous,  
[b] They are finite 
[c] They are single valued 
[d] Their integral ∫ Ψ* ΨdT over the entire range of variables is equal to unity. 
Note also that the differential volume is represented by dT. 
A wave function Ψi is said to be normalized if ∫ Ψi* ΨjdT = 1............................. [18] 
Two functions Ψi* and Ψj are said to be orthogonal if ∫ Ψi* ΨjdT = 0................. [19] 
These relations can be combined by writing  
∫ Ψi* ΨjdT = dy.................................................................... [20] 
Where dy = kroncker delta, which is defined by 
d =   0 for i ≠ j              ........................................................................ [21] 
        0 for i = j 
And the wave functions that satisfy equation [21] is said to be orthonormal.  
OPERATORS 
An operator is a mathematical operation that is applied to a function and in quantum 
mechanics there is a linear operator for each classical mechanical observable. When two 
operators commute, the corresponding variables can be simultaneously measured to any 
precision and when they do not commute, the corresponding observables cannot be measured 
as arbitrary precision  
e.g. d/dx is the operator that indicates that the function is to be differentiated with respect to x 
and � is the operator that indicates that the function is to be multiplied by x. Operators are 
designated with caret. E.g. Â or �. The symbol of the operator is placed to the left of the 
function to which it is applied. The operators of quantum mechanics are linear. A linear 
operator has the following properties:- 
Â (f1 + f2) = Âf1 + Âf2             ------------------------------------------------------------ (22) 
Â (cf) = cÂf              ------------------------------------------------------------------------ (23) 
Where c is a number. The simplest operator is the identity operator Ê for which Êf = f 
An algebra linear operator will give Â3 = Â1 + Â3 or Â4 = Â1Â2 
Note that operator multiplication is different from the multiplication of numbers. 
Example:- 
Suppose � = d/dx, Ø = x and f(x) = x3; do the operators commute? 
Example 1: 

(a) Apply the operator Â = d/dx to the function x2 
(b) Apply the operator Â = d2/dx2 to the function 4x2 
(c) Apply the operator Â = (d/dy)x to the function xy2 
(d) Apply the operator Â = -iђd/dx to the function e-ikx 
(e) Using the same operators as in (d) apply the operator  

ÂÂ = Â2 = (-iђd/dx)( -iђd/dx) = ђ2d2/dx2 to the function e-ikx 

Solutions: 
(a) Â(x2) = d/dx(x2) = 2x 
(b) Â(4x2) = d2/dx2(4x2) = d/dx(8x) = 8x 
(c) Â(xy2) = [d/dy(xy2)]x = 2xy 
(d) Â(e-ikx) =  -iђd/dx(e-ikx) = i2kђe-ikx = -kђe-ikx 
(e) Â2(e-ikx) = -ђ2d2/dx2(e-ikx) = ђ2d/dx(e-ikx) = - i2k2ђ2e-ikx = k2ђ2e-ikx 



Example:- Given (Â� - �Â) = (Â,�), when (Â,�) = 0 the operators are said to commute. 
If  Â = d/dx  and � = x show whether or not  Â and � commute. 
Ans: ABΨ = d/dx(1/x)Ψ  = d/dx (4/x) = d/dx (4x-1) [d(u/v) = {vdu – udv} 
Schrodinger’s Equation and Operators 
Let’s rewrite the Schrödinger’s equation in equation [15] is in the form. 
-(h2/8π2m)     2 Ψ(x,y,z) + V(x,y,z)Ψ(x,y,z) = EΨ(x,y,z)............................................. (24) 
Where the quantity in square brackets is called Hamitonic operator �. 
When an operator e.g. Â, operating on a function e.g. Øn yields a constant, Qn, multiply by 
that function i.e. ÂØn = QnØn.................................................................................... [25] 
We say that Qn is Eigen function of Â; with Eigen value Qn. Thus for the Schrödinger 
equation [24] Ψ(x,y,z) is the Eigen function of  Â with  Eigen value E  
Example: what are the Eigen functions and Eigen value of the operator d/dx? 
d/dx f(x) = kf(x), df(x)/f(x) = kdx, lnf(x) = kx+c 
f(x) = ecekx = c’ekx  
Where c and c’ are constants. For each difference value of k, there is an Eigen function. C’ekx 
or, to put it another way, the Eigen function c1e has the Eigen value k where k can be a 
complex number. 
The Black body Radiation (by plank) 
The blackbody radiation is  an evidence  that light exist as a form of particle. 
The body is a hollow object painted black, when the body is heated up, the electrons gain 
energy and emit radiation till the radiation comes out which we can measure. The intensity of 
the radiation increases with temperature, and also to the number of photons emitted while the 
energy is proportional to the frequency. 
E=hv = hc/λ 
And h = Eλ/c in Js  
The photo electric effect- by Hertz 
Hertz found that if one illuminates one of the electrodes of electric discharge system with 
light, the electric discharged increases. The intensity of current increases irrespective of the 
material of the electrode. 
The energy of the light is converted to discrete particles there is the pot energy to remove the 
electron on the nucleus of the metal surface and energy is also needed to move the electron. 
This is called photoelectron effect which is an evidence that light exist in waves. 
The total energy applied in converted into  
1.  Energy to remove the metal from the surface which is termed work function = � 
2.  The energy due to kinetic energy  
Etotal =  �Workfunction  + Ekinetic  
hν = hνo + 1/2mc2  
The energy responsible for the attraction of electron to the nucleus is a quantum which can be 
replaced by a radiation of light. 
A time will come when the kinetic Energy of electron will be equal to the voltage of meter 
and the energy will be eVo. 
Note that the threshold frequency is the minimum energy required to remove an electron  
from the surface of the metal. 
Therefore, hν = hνo + 1/2mc2  
Where hνo = work function 
hν = hνo + eVo 
eVo = hν - hνo 
A plot of eVo against ν gives a straight line, the slope = h and -hνo is the intercept. 



Example:- A particular metal surface has a work function of 2.0eV. Calculate the expected 
maximum K.E of the electron if the wavelength of the incident photon is 4500Å, calculate 
also the threshold frequency. 
COMPTON EFFECT 
J.J. Thompson observed that whenever X-ray is allowed to strike a matter, the X-ray is 
scattered into  
(1) light that have the same wavelength with the incident photon with energy hv. 
(2) Light with shorter wavelength with that of the incident photon. 
This means that light wave is elastic and that electron in matter is bounded but moves about 
in stationery state in the matter. 
J.J. Thompson came up with the equation. 
λ1 – λ = h/moC [1- Cosθ].......................................................................... (26) 
Which relates the scattered light, incident angle and the Cosθ. The mo is n k by plotting λ’ – λ 
versus Cosθ, intercept = h/moC and slope = - h/moC. 
h/moC = 6.625 x 10-34/9.11 x 10-31 x 3 x 108  
           = 2.4241 x 10-12m 
 
Example  
If a photon of wavelength 0.2Å is scattered through an angle of 45o. What is the wavelength 
of the scatted light in Å and in metre? 
Particle in a one Dimensional Box 

An important problem to treat in quantum mechanics is that of a particle of mass m 
constrained to move in a one-dimensional box of length a. The potential energy V(x) is taken 
to be 0 for 0 � x � a and infinite outside this region in the figure  1. below ( not shown). We 
can see that this leads to quantized energy levels. 
In the region between x = 0 and x =a, then Schrödinger in equation (24) can be written as 
-(ђ2d2Ψ/2mdx2) = EΨ or d2Ψ/dx2 = -2mEΨ/ђ2 = -k2Ψ 
Where k = (2mE/ђ2))1/2 
Figure 1 ( not here): Potential for a particle in a one-dimensional box. The potential becomes 
infinite for x � a and x � 0, and is zero for  0 � x � a. 
 
En = h2n2/8ma2 , n = 1, 2 ---------------------------------------------------- (26).   
Therefore, a particle constrained to be between x = 0 and x = a, has quantised energy levels 
given by eqn. (26). As a gets large, the energy levels get closer together. In the limit of a very 
large box (or a very heavy particle), the energy levels are so close that the quantization may 
be unnoticeable. In the that a becomes very large, all energies becomes allowed (i.e. the 
allowed energies get very close together so that any energy is an Eigen value), together so the 
perfectly free particle can have any energy. 
A particle in a box cannot have zero energy because the lowest energy h2/8ma2 is given by 
equation (26) for n = 1. Although n = 0 satisfies the boundary conditions, the corresponding 
wave function is zero everywhere. The zero-point energy associated with the state n = 1 is 
found whenever a particle is constrained to a finite region; if this were not so the uncertainty 
principle would be violated. The next higher energy levels are at a four time (n=2) and nine 
time (n=3) this energy, as shown in fig.2. The wave functions are superimposed on this plot, 
and we can see that the wavelength is equal 2a/n.  
FIGURE 2 is not here 
Figure 2(a): Wave function Ψ and (b) Probability density function Ψ*Ψ for the lowest three 
energy levels for particle in a box. The plots are placed at vertical heights that correspond to 



the energies of the levels. As the number of nodes goes up, the energy goes up (c) The 
product of wave functions Ψ1*Ψ2 and Ψ1*Ψ3 plotted against x. 
Note that the normalized wave function for a particle in a one-dimensional box is 
Ψn = (2/a)1/2 Sin (nлx/a)x............................................................................... (27) 
Note that the probability density at point x is given by the square figure 2b of the wave 
function Ψ2 = (2/a) Sin2 (лx/a) given the probability densities Ψ*Ψ for a particle in an 
infinitely deep box. These are the probabilities per unit distance that the particle will be found 
at a given position. The most probable position for a particle in the zero-point level (n = 1) is 
in the centre of the box. Note that the Ψn are waves with wavelength λn = 2a/n, this means 
that Ψn is zero at value of x equal to an integral number of λn/2. These zeros are called nodes 
of the wave function. The more nodes in an eigen function, the higher its Eigen value of 
energy. For one-dimensional problem the number of nodes is n-1. 
As the value of n is increases, the probability density increases more and more, for very high 
values of n, there so many oscillations that the probability density becomes constant. Particles 
in a box wave functions are orthonormal i.e. 
(-∞ � x � +∞) = � Ψi*Ψjdx = 0 if i ≠ j. 
Which can be seen if we plot Ψi*Ψj for i ≠ j as a function of x in figure 2(c). We can see that 
the most probable position for the particles is in the middle of the box if the system is in the 
ground state, but it is more likely to be at a/4 or 3a/4 in the first excited state (n = 2) If we 
measure the position of a particle in a box, we would yet different answers in different trials. 
Lets define  E =  n2h2/(8ma2) ............................................................................. (28) 
Where n = 1, 2, 3..... is quantum number. The energy, E, can only have discrete values as 
shown in the above equation. This is an important result since the imposition of boundary 
conditions on the solution to the S.E results in the appearance of quantum numbers that 
restrict the energies to discrete values. This is then the source of the term quantum 
mechanics; the energies of the system are quantized. 
The solution we obtained now is Ψ(x) = A Sin (2mE/ђ2)1/2 x 
This is not yet complete since we still need to determine the value of A. To solve this 
problem we normalise Ψ(x) because the probability of finding a particle, somewhere in space 
is one, for our case, all space is the dimension of the box because the particle is not allowed 
outside this region. 
(0 � x � a) = � Ψ*Ψ dx = � [A Sin (2mE/ђ2)1/2 x]2dx = 1 
Ψ* = Ψ because Ψ is real in this case where ђ2 =h2/4л2, E = n2h2/8ma2 
A2/2[� (1 – Cos (2nл/a)x)dx] = 1 
A2/2[x – a/2nл Sin(2nл/a)x)dx] (0 � x � a) = 1 
A2/2[a – 0 + a/2nл Sin(2nл/a) 0+0] = 1 
A2 = 2/a,  
Hence Ψ(x) = (2/a)1/2 Sin (nлx/a)x................................ (29) 
Equation (29) is now the desired solution. We can now calculate the probability of finding the 
particle at any point, x, once the values of n, x and a are known. 
Note also that we can now calculate ∆E for n equals two different values e.g. 2 and 3 from 
equation (28) 
The probability is [Ψ(x,n)] so if the value of n, x and a are known, then it can be evaluated. 
 
 
 
Particle in a Three Dimensional Box 
We have been dealing with particle in a box. Here we want to expand the box to three 
dimensions. The particle is confined to a regular shape with sides of a, b, and c by having an 
infinite potential outside the box. 



The time-independent Schrodinger equation for a single particle of mass m, moving in three 
dimensions is  
�Ψ(x,y,z) = EΨ(x,y,z)........................................................................................(32) 
Where the Hamittonian operator is     � = - (ђ2/2m)       2 Ψ + V(x,y,z).................... (33) 
And         2 = d2/dx2 + d2/dy2 + d2/dz2..................................................................... (34) 
Where     2 = laplacian operator or Del square. 
The wave function is normalized so that (-∞ � x � +∞) = � Ψ*(x,y,z)Ψ(x,y,z)dxdydz = 
1..........(35) 
If a particle can move in three dimensions, its probability density P(x,y,z) is given by 
P(x,y,z) = Ψ*(x,y,z)Ψ(x,y,z)....................................................................................................(36) 
The probability that x coordinate is between x and x + dx, the y coordinate is between y + dy 
and the z coordinate is between z + dz is P(x,y,z)dxdydz = Ψ*(x,y,z)Ψ(x,y,z)dxdydz which can be 
shortened to Ψ*ΨdT where dT represents the differential element  of volume dxdydz. 
Since the potential within the box is zero, the following partial differential equation for the 
region inside the box is obtained as -ђ2/2m(d2/dx2 + d2/dy2 + d2/dz2)Ψ = EΨ.................. (37) 
If we assume that the wave function Ψ is the product of three functions each depending on 
just one coordinate we will have; 
Ψ(x,y,z) = X(x) Y(y) Z(z)........................................................................................................ (38) 
By substituting this for Ψ in equation (37) and then divide by X(x) Y(y) Z(z) we obtained 
-ђ2/2m(1/X(x)[d2X(x)/dx2] +1/Y(y)[ d2Y(y)/dy2] +1/Z(z) d2Z(z)/dz2]) = EΨ......................... (39) 
Since the terms on the left hand side of the equation are a function of different independent 
variable and this can be varied independently of one another, each must equal a constant in 
order that the sum of the three terms equals a constant for all values of x, y and z. 
Ex + Ey + Ez = E............................................................................................................. (40) 
This coverts the partial differential equation (39) into three ordinary differential equations 
that can be easily solved 
-ђ2/2m(1/X(x)[d2X(x)/dx2] = Ex........................................................................................ (41) 
-ђ2/2m(1/Y(y)[d2Y(y)/dy2] = Ey......................................................................................... (42) 
-ђ2/2m(1/Z(z)[d2Z(z)/dz2] = Ez............................................................................................ (43) 
These equations are just like equation (27) and may be solved in the same way to obtain 
X(x) = A(x) Sin nxлx/a = A(x) Sin (2mEx/ ђ2)1/2x................................................................. (44) 
Y(y) = A(y) Sin nyлy/b = A(y) Sin (2mEy/ ђ2)1/2y.................................................................. (45) 
Z(z) = A(z) Sin nzлz/c = A(z) Sin (2mEz/ ђ2)1/2z...................................................................... (46) 
Where a, b and c are the lengths of the sides in the x, y and z directions respectively, nx, ny 
and nz are non-zero integers called quantum numbers and Ex = h2nx

2/8ma2 and so on. 
Thus there is a quantum number for each coordinate. When the wave function is normalized, 
we obtained Ψ(x,y,z) = (8/abc)2 Sin nxлx/a Sin nyлy/b Sin nzлz/c ......................................... (47) 
When the Eigen function is substituted in eqn (37) we obtained: 
 E = h2/8m(nx

2/a2 + ny
2/b2 + nz

2/c2)............................................................... (48) 
The three quantum numbers are independent and for a given set of three quantum numbers 
there is in general, a unique value for the a ≠ b ≠ c. 
 If the sides of the box are equal; if a = b = c, the energy levels are given by 
E = h2/8ma2 (nx

2 + ny
2 + nz

2)............................................................... (49) 
If a ≠ b ≠ c, there may be several combinations (nx, ny, nz) that yield the same energy for 
example (2,1,1), (1,2,1) and (1,1,2) have the same energy. These three states of the system 
(with different wave function) make up a level that we can refer to as the 211 level. Such an 
energy level is said to be degenerate and the degeneracy is equal to the number of 
independent wave functions associated with a given energy level as shown below. Note that 
111 level is non-degenerate. 
nx, ny, nx 111 211 221 311 222 321 322 411 331 



Degeneracy 1 3 3 3 1 6 3 3 3 
 
The degeneracy of a translational energy level increases rapidly with energy. If n2 = nx

2 + ny
2 

+ nz
2, the E =  h2/(8ma2). n2 

If we think of allowed values of nx, as point along x-axis, ny along the y-axis and nz along the 
z-axis, then n can be taught of as the length of a vector in this three dimensional space. All 
such vectors with the same length have the same energy they represents degenerate states. 
The Degeneracy of quantum levels at thermal energy 
The most probable transistional energy for an atom in a gas at temperature T. is equal to 
3/2KT. Where K = R/NA = Boltzman constant. 
Reduced Mass and Moment of Innertial of Molecules 
Let define    µ as the reduced mass = m1m2/m1+m2........................................................... (50) 
Where m are the molar mass in kg. E.g. The reduced mass for CO is given by µ = 
m1m2/m1+m2     = (12 x 10-3)(16 x 10-3)/(12+16) x 10-3 x 6.022 x 1023 
= 1.139 x 10-26 kg 
The moment of Inertia (I) is defined by the equation I = µRe

2 fo the rotation of a classical 
particle about the axis. Where Re is the equilibrium inter-nuclear distance between the nuclei 
of a molecules. 
 
 
Rotational energy levels of Molecules 
A rotating molecule has quantized angular momentum. In considering the rotational energy 
levels of molecules, the rotational quantum number is denoted by J so that  
E = h2/2I .J(J+1)..........................................................................................................   (51) 
The square of the total angular momentum is given by L2 = J(J +1) ђ where J = 0, 1, 2. 
The angular momentum vector L with respect to a particular direction is defined as Lz = - ђ, 
0, ђ 
Where the choice of the z axis is entirely arbitrary. 
Calculate the reduced mass and the moment of innertia of CO the equilibrium internuclear 
distance is 123.5 x 10-12. What are the values of Lz given that J = 1, C = 12, O = 16. 
 
 
    Summary Particle in a Three-Dimensional Box   
 
Consider a particle constrained to move in a rectangular box of dimensions a, b, and c in 
length. Within the box (i.e. between x = 0 and a; y = 0 and b and z = 0 and c), the potential 
energy is zero at the walls and everywhere outside the box, the potential is ∞. 
Recall S.E for 3-dimensional box 
d2Ψ/dx2 + d2 Ψ/dy2 + d2Ψ/dz2 +8л2m/h2 (E –V) Ψ = 0 
Where Ψ and V are  f(x, y, z). Since V = 0 inside the box, then the last equation becomes 
d2Ψ/dx2 + d2 Ψ/dy2 + d2Ψ/dz2 + 8л2m/h2 EΨ = 0.................................................... (52) 
Equation (52) may be solved by writing the wave function as the product of three functions 
each depending on one coordinate 
Ψ(x,y,z) = X(x) Y(y) Z(z)............................................................................... (53) 
Differentiating equation (7) 
dΨ/dx = Y(y) Z(z) dX/dx 
d2Ψ/dx2 = Y(y) Z(z) d2X/dx2.......................................................................... (54a) 
and by a similar reasoning 
d2Ψ/dy2 = X(x) Z(z) d2Y/dy2.......................................................................... (54b) 
d2Ψ/dz2 = X(x) Y(y) d2Z/dz2.......................................................................... (54c) 



Substituting equations 54a, 54b and 54c into equation (52) 
Y(y) Z(z) d2X/dx2 +  X(x) Z(z) d2Y/dy2 + X(x) Y(y) d2Z/dz2 + 8л2m/h2 E X(x) Y(y) Z(z) = 0...... (56) 
-h2/8л2m (1/X(x)[d2X(x)/dx2] +1/Y(y)[ d2Y(y)/dy2] +1/Z(z) d2Z(z)/dz2]) = E............................. (57) 
We can write the energy level as the sum of three contributions associated with the 
coordinates 
E = Ex + Ey + Ez................................................................................................... (58) 
Using eqn (57) in (58) we can separate the expression obtained into three equations 
-h2/8л2m (1/X(x)[d2X(x)/dx2] = Ex.............................................................................. (59) 
-h2/8л2m (1/Y(y)[d2Y(y)/dy2] = Ey.............................................................................. (60) 
-h2/8л2m (1/Z(z)[d2Z(z)/dz2] = Ez................................................................................ (61) 
Each of eqns 59, 60, 61 is similar to the expression for the particle in a one dimensional box. 
Hence their solutions are 
X(x) = (2/a)1/2 Sin (nxлx/a) En,x= nx

2h2/8ma2 
Y(y) = (2/b)1/2 Sin (nyлy/b) En,y= ny

2h2/8mb2 
Z(z) = (2/c)1/2 Sin (nzлz/a) En,z= nz

2h2/8ma2 
Where a,b,c are lengths in x,y,z direction respectively and nx, ny, nz are quantum numbers. 
Since Ψ(x,y,z) = X(x) Y(y) Z(z) and E = Ex + Ey + Ez, then 
Ψ(x,y,z) = (8/V)1/2 Sin nxлx/a Sin nyлy/b Sin nzлz/c............................................................. (62) 
Where V is the volume of the box, 
Ex,y,z = h2/8m(nx

2/a2 + ny
2/b2 + nz

2/c2).............................................................................. (63) 
Whenever the 3-dimensional box has geometrical symmetry, more interesting results are 
often obtained, in a cubic box, a = b =c thus eqn (63) becomes 
E = h2/8m(nx

2 + ny
2 + nz

2)................................................................................................. (64) 
Suppose nx = 3, ny = nz =2 then 
Ψ(x,y,z) = (8/V)1/2 Sin 3лx/a Sin 2лy/b Sin 2лz/c.................................................................. (65) 
E = h2/8m (32 + 22 + 22) = 17h2/8ma2................................................................................ (66) 
Assuming we have another set of values nx = 2, ny = 3, nz = 2 then 
Ψ(x,y,z) = (8/V)1/2 Sin 2лx/a Sin 3лy/b Sin 2лz/c................................................................. (67) 
E = h2/8m(22 + 32 + 22) = 17h2/8ma2................................................................................ (68) 
Suppose nz = 3, ny = nx =2 then 
Ψ(x,y,z) = (8/V)1/2 Sin 2лx/a Sin 2лy/b Sin 3лz/c..................................................................(69) 
E = h2/8m(22 + 22 + 32) = 17h2/8ma2................................................................................ (70) 
Even though these states are different, their energies (eqn 59, 60, 61) are the same. The three 
states are said to be degenerate because they have equal energy.  
For a situation where nx = ny = nz = 1 it corresponds to only one state of the system. The same 
is true of nx = ny = nz = 2 but for the situation such as ni = 2, 2, 1 or 3, 1, 1, three degenerate 
states are obtained (figure 5 not shown): Quantized energy levels of a particle in a cubic box) 
Suppose we wish to calculate the transition energy between the level E2,2,2 and E3,2,1 the, 
∆E = 14h2/8ma2 + 12h2/8ma2 = hν 
hν = 2h2/8ma2 = h2/4ma2 

Given appropriate data, it should be possible for us to evaluate ν. If the value of a, is known, 
the transition energy can be evaluated. 
    
   Zero Point Energy 
 
According to the old quantum theory the energy level of a harmonic oscillator is E = nhν 
The lowest energy level with n = 0 would have zero energy. Based on the wave treatment of 
the system, the energy level corresponds to the state with quantum numbers nx = ny = nz = 1. 
The difference between these two values is called the zero point energy. 
 



    Free Electron Model 
 
The simple calculation done for the particle in a one-dimensional box can be applied to 
estimate the absorption frequency of some organic molecules, presumably conjugated dienes. 
The method often employed is the free electron model. For the л electrons of these 
molecules, the energy for the lowest electronic transition is that required to raise an electron 
from the highest filled level (HOMO) to the lowest unfilled level (LUMO). For molecules 
with conjugated dienes, it has been found that the electronic absorption bands shift to longer 
wavelengths (Bathochromic or red shift) as the number of conjugated  dienes is increased 
each carbon atom contributes one electrons are free to move the entire length of the series of 
л-orbitals and are not localized on a given carbon atom. In the free electron model, it is 
assume that л-system is a region of uniform potential and that P.E rises sharply to infinity at 
the end of the system. 
Hence the energy level, E, available to the following electron would be expected to be 
analogous to that of particle restricted to move in one direction. The л-electrons are assigned 
to orbitals so that there are two in each level (with opposite spin) starting with the lowest, for 
completely conjugated hydrocarbon, the no of л-electrons is even and the quantum number of 
the HOMO is n = N/2 where N is the number of л-electrons involved and parallels the 
number of carbon atoms in the system. In absorption, an electron from the HOMO is excited 
to the LUMO with quantum no n1 = (N/2 + 1). The difference in energy between these levels 
is ∆E = h2/8ma2(n12 – n2) = h2/8ma2[ (N/2 +1)2 – (N/2)2] 
The absorption frequency in wave number is ∆E = hν, c = λν, ∆E = hc/λ = hc� 
� = ∆E/hc = h(N+1)/8ma2c...................................................................................... (71) 
let us consider butadiene with the structure C=C-C=C, if the 4л-electrons are removed, we 
have C+-C+-C+-C+ at the boundary, the potential is infinitely large. The first transitions for the 
system corresponds to electron from E2

4/2 to E3
4/2+1  

∆E = E3 –E2 
      = 9h2/8ma2 – 4h2/8ma2 
To estimate a, two methods are used; 
When end effects are not neglected, a equals the sum of bond lengths and ½ bond length of 
the extensions at both extremes 1/2b.LC= C-C=C1/2b.L 
When end effects are not neglected (better because V = ∞ at the extremes) 
a = 1.54 (N-1)Å, where N = number of carbon atoms. 
Examples: Calculate the lowest absorption wave number for octatetraene neglecting end 
effects. 
Solution: First draw the structure end effect– C=C-C=C-C=C-C=C- end effect 
a = 1.54 (8-1)Å = 10.78Å 
Draw the energy-level diagram to determine the quantum levels involved in the transition 
∆E = 52h2/8ma2 – 42h2/8ma2 
      = 9h2/8ma2 
But ∆E = hν = hc� 
hc� = 9h2/8ma2,  � = 9h/8ma2c 
� = 9 x 6.626 x 10-34/8 x 9.11 x 10-31 x (10.78 x 10-10)2 x 3 108 
   = 2.347 x 106 m-1 
   = 2.347 x 104cm-1 
If it is energy, ∆E = hν = 9h2/8ma2 
                   = 9 (6.626 x 10-34)2/8 x 9.11 x 10-31 (10.78 x 10-10)2 
        = 4.67 x 10-19J or 2.91eV 
The Hydrogen Molecule Ion 



The hydrogen molecule ion, H2
+ consist of 2 protons and 1 electron and is thus the simplest 

molecular system that can be encountered in nature. The hydrogen molecule ios often 
represented as shown below: 
We have one proton each at A and B. The potential energy for a hydrogen atom is u = -e2/rA  
Similarly, the P.E for the hydrogen molecule ion is u = -e2/rA – e2/rB + e2/rAB................... (72) 
The first two terms in eqns 72 represent the electrostatic attraction between the nuclei and 
electron while the last term represent the repulsion between the nuclei. The kinetic energy for 
molecule is K.E = P2/2m = 1/2m (Px

2 + Py
2 +Pz

2) 
Where P = momentum of the electron, m = mass of the electron, and the electron is assumed 
to be moving in three directions. Note that we have assumed rAB fixed which implies that 
only K.E term need be considered: the K.E due to the electron motion. 
Recall S.E for a 3-dimensional system which is  
d2Ψ/dx2 + d2 Ψ/dy2 + d2Ψ/dz2 +8л2m/h2 (E –V(x,yz)) Ψ = 0 
which can be written as �Ψ = EΨ......................................................... (73) 
where � = - h2/8л2m(d2/dx2 + d2/dy2 + d2/dz2) Ψ + V(x,y,z) is known as the Hamittonian 
operator and     2 = d2/dx2 + d2/dy2 + d2/dz2 is a Laplacian operator. Equation 73 is known as 
the Hamittonian form of the Schrodinger equation. 
Note that ђ = h/2л and � = - ђ2/2m       2 + u(x,y,z).................................. (74) 
The Schrodinger eqn for the hydrogen molecule ion is (- ђ2/2m   2   + e2/rAB – e2/rA – e2/rB)Ψ 
= EΨ.......................................................................................................................... (74) 
The wave eqn is simple and it is possible to get an exact solution. We now attempt to set up 
S.E for the hydrogen molecule which has two electrons and 2 nuclei as shown the figure 
below: 
We are to write expression for the K.E, write expression for the P.E and put both expression 
in the S.E. 
The total K.E = (K.E)1 + (K.E)2 
                        = P1

2/2m + P2
2/2m 

Where 1,2 stand for 1st and 2nd electrons 
The total K.E = 1/2m (Px1

2 + Py1
2 + Pz1

2) + 1/2m (Px2
2 + Py2

2 + Pz2
2) 

The P.E for the system is  
U(x,y,z) = -e2/r1A – e2/r1B – e2/r2A – e2/r2A + e2/rAB + *e2/r12..................................... (75) 
* represents repulsion between the two electrons 
The S.E for the hydrogen molecule is 
[- ђ2/2m(    2 +    2) - e2/r1A – e2/r1B – e2/r2A  - e2/r2B + e2/rAB + e2/r12]Ψ = EΨ 
Which transform to 
(    1

2 +     2
2)Ψ + 8л2m/h2 [E + e2/r1A + e2/r1B + e2/r2A + e2/r2B - e2/rAB - e2/r12]Ψ = 0............ 

(78) 
This is the required equation. Whereas it is possible to get an exact solution to eqn 2.8 by 
separating into any other coordinates (e.g. polar or spherical). We cannot solve eqn 3.0 
exactly because of the presence of the repulsive term e2/r12. In this situation, we use an 
approximate method to get solution to the S.E. we always aim at the energy of the system in 
joint form compared with when the atoms are far apart. We have assumed that both nuclei A 
and B are fixed meaning that their K.E will be almost zero. Thus instead of the K.E being: 
K.E = KA + KB + K.E1 + K.E2 
We have neglected that due to the nucleus both eqns 2.8 and 3.0 giving us K.E = K.E1 + K.E2 
for the hydrogen molecule. The justification for doing this is that the motions of nuclei in 
ordinary molecular vibrations are so slow compared to the motions of the electrons that it is 
possible to calculate the electronic states on the assumption that the nuclei are held in fixed 
position. Thus is the Borh-oppenheimer approximation. What this means is that in eqn 3.0 for 
instance, we consider rAB constant. We can therefore calculate E for the fixed values of rAB. If 



we change the value of rAB, a corresponding value of E(rAB) can be got. Thus it should be 
possible to make a plot of E(rAB) against rAB in the figure below (Figure (x;  NOT SHOWN  ) 
potential energy curve showing the variation of the total  energy of the system with the 
internuclear distance, rAB). 
Figure (x) is known as the potential energy curve. In this figure, the equilibrium inter nuclear 
distance is req and it corresponds to the region where the total energy of the system is a 
minimum (i.e. the system is stable there). It is called the bond length. When r, is small the 
molecule is unstable and also when r, is large, it is unstable because the attractive force may 
not be large enough to offset the repulsive force. In between A and B, the molecule is stable 
but it is most stable at req. 
The attractive state leads to bonding molecular orbitals whereas the repulsive state leads to 
antibonding M.O. 
We cannot obtain exact value of E for the hydrogen molecule because of the presence of the 
repulsive term which made it impossible for us to separate the molecule into hydrogen atoms 
for which two electrons are involved. Also the presence of      1

2 and       2
2 in the S.E for the 

hydrogen molecule suggests that we should look for another way of solving the equation. The 
approximate method known as the variation method is often employed. 
 
 
 
 
 
 
 
Quantum chemistry and chemical bonding 
 
  Secular equation 
 

Van der Waal bonding is a transient/temporary with δ+ 

and δ- becoming attracted. However, in chemical bonding, 
there is actual sharing of electrons by atomic orbitals to 
form molecular orbital. 
 
Consider a bonded system, the total energy of the  
System = kinetic + potential  
i.e H = T + V 



Let’s represent the atomic orbital by φ (phi) and molecular 

orbital by ψ (psi) 
From the Schrodinger wave equation 

  V
2m
PH

2

+=  

Hψ - Eψ = total energy of system  (1) 
(H – E) = 0  (2) 
 

ψ = C1φ1 + C2φ2 + ... + Cnφn 
 

∑
=

n

1i
iiφC   (3) 

Where iφ  is the number of atoms in a molecule 

ψ= 0E)φ(HC
n

1i
ii =−∑

=
 (4)  

Adding to 2 atoms;  

C1(H-E) φ1 + C2 (H-E) φ2 = 0 (5) 

A secular equation can be devp. mult. by φ1 and integ. all 
over config.  

0dτE)φ(HφCdτE)φ(HφC 22111 =−+− ∫∫  
 

iS∫∫∫∫ −−+− EdτφφEdτHφφ[CdττφφEdτHφφ[C 2121211111     (5)
  
   

0)()[ 1212211111 =−+− ESHCESHC  (6) 

Multiplying from L.H.S. with φ2 and integrate over all 
configurational space gives 

iS∫∫∫∫ −−+− EdτφφEdτHφφ[CdττφφEdτHφφ[C 2222212121  
C1 (H21 – ES21) + C2CH22 – ES22) = 0  (7) 



Note C1 (H11 – ES11) + C2 (H12 – ES12) = 0 
C1 (H21 – ES21) + C2 (H22  - ES22) 
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To know the determinant; Ci ≠ 0 otherwise there’s no 
molecular orbital  
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H11 (H22 – ES22) – ES11 (H22 – ES22) - H21 (H12 – ES12) + 
ES21 (H12 + S12) = 0 
H11 H22 – ES22H11 - ES11H22 + E2S22S11 - H21 H12 + 
ES12H21 + ES21H12 – E2S12S 
H11 H22 – H21 H12 – E(S22H11 + S11 H22 - S12H2 - S21H12) + 
E2(S22S1S12S21) = 0  
C = H11 H22 – H21 H12,  b= - (S22H11 + S11H22 - S12H21 - 
S21H12), a = S22S11- S12S21 

  

a
acbbE

2
42 −±−

=  

 

))((4)(

)(

1221121122121122
2

1221211222111122

1221211222111122

HHHHSSSSHSHSHSHS

HSHSHSHSE

−−−−−+−

±−−++=
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note: c + bE + aE2 
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Hii  =  ∫ τφφ dH ii  conlomb ⇒ α 

Hij  =  τφφ dHH jiij ∫=  resonance ⇒ φ 
Sii  =  1 maximum overlap  
Sij  =  S if 1i – j = + 1 adjacent atom  
 = 0 if Ij – j <> + 1 
 
Ass: Use these expressions to solve for E  
 
For more than 2 atoms, there’s no need to derive again the 
secular equations after pattern which is quite clear is 
similarly  
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For diatomic molecule; homo-nuclear  
C1 (H11 – ES11) + (H12 – ES12) C2  = 0 
 
(H21 – ES21) C1 + CH22 – ES22) C2 = 0  
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Since homonuclear H12 and H21 are same, then  
ES12 and ES21 are the same  
Divide through by H12-S12  
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If α = - 5      αβ = -2   E+ = - 3 , E = - > 
 

Variation Method  
 

According to Schrödinger equation Hψ = Eψ……………(1) 

    Eψ = Hψ multiply by ψ and integrate 
over configurational space.  
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ψ = C1φ1 + C2φ2………………………………….(5) 
 
subs. (5) into (4) 
 
The energy of system; 
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excited state  
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2121 CCorCC =−=∴   
  ψ+ = C1 (φ1 - φ2) 
    C1 = C2 ground state 

and  ψ- = C(φ1+ φ2) 

ψ- = C1(φ1+ φ2) 

ψ- = C1φ1+ C2φ2 

       C1φ1 – C1φ2 

  C1(φ1 – φ2) 

E+ ________________ ψ+ = C1(φ1+ φ2) 

E-_________________ ψ- = C1(φ1+ φ2) 
Ci affect the probability of finding an e- in configuration 
specie but are not probability-coefficient because one Ci is –
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what of heteronuclear diatomic? 
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note if x = H  overlap of H – Cl is larger than H – H 
 

y = Cl  hence H – Cl is > H – H by a factor e.g. α 
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when δ and E = 0 ; x = + 1 

solve for the system where δ = 0.2x and E = =x 5
2  

 
Nature of Hii and HiJ 

Considering H atom  
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For ijH  

><+>−<+>−∇
−

−<=>< ab
abdr

Zabea
bdr

Zbeba
adr

ZaebaHb
1

2

1

2

1

2
2

2

2μ
h  

H11 = Ea + J + R 

><+>
−

<+><+ abRa
bdr

ZbebabEa
1

2

 

 
 

RSKEaSHaHb ++==>< 12  

R
ST
KJE

S1
HHE 1211

1 +
−
−

+=
−
−

=  

R+
+
+

+=
+

+++++
+=

+
−

=−
S1
KJE

S1
S)R(1KJS)(1Ea

S1
HH

E 1211  

 
K determines the extent of bonding or contribution of 
stability to the system as R and J are equal but opposite 
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R = repulsion integral for e-, Q – repulsion integral for 
nucleus  

for (b) S)2R(1
2dr
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5 = 2 φ (1 + S) 
 

ψ , which has been used to describe M. O. so far as linear 

combination subwave functionψ1 and  ψ2 each of which is a 
product combination of A. O.  
i.e. M. O. = linear combination of subwave of each of which 
is a product combination of atomic orbitals 
Using the wave function  

ψ  = C1ψ1 + C2ψ2 

    = C1φa (1) φb(2) + C2φa (2) φb(1) 
Suppose C1 = C2 = N  

  ψ = N <φa (1) φb(2) + φa (2) φb(1)> 
both atomic orbitals donate one e- each 
Aa _______Ab Aa _______Ab  
 
M. O. Theory states that each atom contribute e- into the M. 
O. (into the wave function) so that the bonding described as 
M. O. is purely covalent in nature 
Suppose we reverse the order taking the product combination 
after the linear combination  

  ψ = Nψ1ψ2 



  N (<φa (1) + φb(1)) + (φa (2) + φb(2) 

  = (<φa(1) φa (2) > + <φa(1) φb(2)> + (φb (1) φa(2) + 

<φb(1) φb(2)> 
-Aa – Ab+   Aa – Ab Aa – Ab Aa+ – Ab- 

← equal contributions → 
     purely covalent in nature 
Suppose we reverse the order taking the product combination 
the linear combination  

  ψ = Nψ1ψ2 

  N (<φa(1) φb(1) > + <φa(1) φa(2)> + (φb (2) 

= (<φa(1) φa (2) > + <φa(1) φb(2)> + (φb (1) φa(2)> + 

<φb(1) φb(2)> 
-Aa – Ab+   Aa – Ab Aa – Ab Aa+ – Ab- 

   ← equal contributions→ 
    purely covalent 
 
Proposal thus takes case of not only the covalent but also 
the possible ionic bonding 
Configuration interaction theory 
 
Another theory supposes the ground state is actually mixed 
with some amount of the excited state. Thus, the wave 
function observed are slightly mixed from one perspective 

∴  ψ = ψ1ψ2 + just ψ1ψ2 

ψ = ψ1ψ2 f just ψ1ψ2 

Excited state=   (<φa(1) φb(1) φa(2) φb(2) + (φb (2) + f 

(φa(1) - φb(1) (φa(2) (φb(2) the excited state must have  a 
–ve sign 



=   (<φa(1) φa(2) + φa(1) φb(2) + (φb (1) + φa(2) + φb(1) 

(φb(2)  
 
 
Note  

ψ = C1φ1 + C2 φ2 

ψ = φaφb 

ψ = N[ψ1 + ψ1 ] 

φ(1)φb(2) φ(2)φ(1) 
a      b  a       b 

ψ = ψ1ψ2 =  φa(1)φb(2)just ψ1ψ2 

ψ = ψ1ψ2 =  φa(1)φb(1) φa(2) + φb(2) 

ψ = ψ1ψ2 + f ψ1ψ2 

= φa(1)φb(1) φa(2) + φb(2) + f φa(1) - φb(1) φa(2) –φb(2) 

= φa(1)φa(2)  + φb(1)φb(2) +  φa(1)φb(2) + φa(2)φb(1)] 

f [φa(1)φa(2)  + φb(1)φb(2) -  φa(1)φb(2) + φa(2)φb(1)] 

= 1 + φa(1)φa(2)  + φb(1)φb(2) +  (1 – f) (φa(1)φb(2) + 

φa(2)φb(1)] 
f can be 0, +1, -1 

babbaa AAAAA −−− −++A  
 
By setting F = 0, essentially you’re dealing with the M. O. 
theory If f = -1, you get M. O. theory, which is a covalent 
contribution  
If f = +1, describes a totally ionic condition  
 
Putting an atom in the centre of coordination, 
 

ψ = R (r) θ(θ) φ(φ) 



        n        l     m 
R is a function of Radius itself, angle with Z axis and 
angle with x axis respectively. 
 
Eml 0   +1   +2  +3  (magnetic 
quantum nos) 
       S  P  D  F 
 

Where Cn = ∞  and CIn  = ∞ 

You have Dn = ∞ 

ψ = const e+ x φ 
0  +1 +2 +3 

σ π δ ω 
λ = 0, +1, +2 +3 

σ π δ φ 
∑ π Δ Φ Team symbol 

 

ψ = ψ1ψ2 = Is/s 
 
There are 2 ways of classifying this mol orb 

(1) Origin = H atomic orbitals f/qch they emerge e.g. 

σg (Is) (it could have w i.e. f/ 35 atom) 

(2) Position in energy scale e.g. /σg, 2σg, 3σg 
The atomic orbitals f/quenching these m. o. occur can be 
linkied or correlated to them in 2 form i.e.  

(1) In terms of energies  
(2) In terms of the symmetries of origin atomic 

orbitals qch can be correlated to the symmetries of m. o.  
If they are of the same symmetry, they’re correlated.  If 



not they’re not correlated.  To change symmetry to 
correlate involves use of a large amount of energy. 

The concept of correlation diagram of A. O. and M. O. is 
found on these 2 term i.e. ‘’ ‘’ in terms of energy (easier to 
perceive) and ‘’ ‘’ ‘’ ‘’ ‘’’ symmetry  
 
M .O. has lower energy than A. O.  
 
 
 
The energy correlation diagram req. that certain atomic 
orbital combine to form mol orb. 
 
 
 
 
 
At the third level, the sequence change. The size of splitting  

= ΔE = abellthere',
E(2s)E(2p)

1aΔE
−

=  

When E(2p) – E(2) is small; ΔE is large 

Repulsion between 2σu and 3σg such that 1πu is really 

nearer to 2σu 
Then u fill in the orbital with the available e-.  Only 2e- can 
occupy an orbital and they should be of opp……………..  An 
excited will have an e- in a higher orbital when the lower 
orbital still has only e- 

e.g. 1σg2 = hydrogen molecule; 1σg1 1σu 1 ⇒ excited state 
 
 
 



 

Helium He2 molecule - 1σg2 σu*2, but molecule is not stable  

Viz  ⇒  1σg2 1σu*2 2σg2 (behaves like H2) 

Term symbol of H2 = ∑  

Multiplicity (25 + 1) = 1 because S = 0 i.e. 1∑g, u + mirror   



Net no of bonding to antibonding (i.e. bonding – antibonding) 
 

Molecule Spin # σg σu* 2σg σ2u* 1πu 3σg 1πg* 3σu* Energy 

   σg(Is) σu*(1s) σg(2s) σu*(2s) πu (2p) 

σg 
(2p) 

πg*(2p) σu*(2p) (Symmetry) 

+2 
2
1  1 ↑        Bonding 

2.65 
Bond 
length 
1.06 

Grou
state 
terms
2∑+g 

+2 0 2 ↑↓        4.48 0.78 1∑+g 
+2 

2
1  1 ↑↓        (3.1) 1.08 1∑+g 

+2 0 0 ↑↓        - - 1∑+g 
+2 0 2 ↑↓        1.0 2.67A 1∑+g 
+2 0 0 ↑↓        not 

stable 
- 1∑+g 

+2 1 2 ↑↓        3.6 1.54 3∑-g 
 



The higher the net bonding to anti-bonding; the more stable because the bond energy is more: 
Look at +

2He  is theoretically computed that’s why bond energy is put in bracket for +
2He  

Bond energy is also called dissociation energy 

Electronic configuration of Be2 is 1σg2 1σu etc but for Be – 1s22s2 etc. 
 
Molecule 

+2 0 4 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓    6.2 1.24A 1∑+g+ 
+2 

2
1  5 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑   8.73 Not 

known 
2∑+g+ 

+2 0 6 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓   9.76 1.09 1∑g 
+2 

2
1  5 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑  6.48 1.12  

 

∑- : symmetry operation of reflection    +
2N is very stable  

  



 1σg 1σu*S              

02 4  ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑↓ ↑↓  5.08 1.21 2∑-

g+ 
Fe 2  ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓  1.6 1.44 1∑g 
Ne 0  ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ - -  

 

Boron ⇒ 1πu  
11

1
111 −

↓
+
↑

−
+
↑↓

−
↑

+
ORoRa  

 



For case L; Ω = 0 ∴ Term symbol is ∑g 

For case A ; 3∑g (Ω  = 0) 

Fro case B; Ω = 2 , Term symbol 1Δg 

If two multiplicities are equal; the largest value of L, angular 

momentum is next stable ∴ in order of stability we have  
1∑g 
1Δg  stability i.e. why the intensity of oxygen is low 
because of the spin is not the same and thus forbidden 
3∑g 
 
Morse’s potential energy for the formation of a molecule, the 
electron sit inside the vibrational levels (in each are also the 
rotational levels) 
 
 
Vibration is determined by “a” in the equation  
 
Expanding the equation  

DeeDEP
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M. P. E. curve describes the bonding between molecules 
 

The slope at any point = 
1d

dEp  

0)22 )()(2 =+= °° −−−− rrarrae aeae
dr
dE  at bottom of curve  

Because at bottom of curve 
dr

dE p = 0 



0)12 )()( =−+ °° −−−− rrarra eae  
 
This is not zero therefore the one in bracket must be set in 0 

∴ 01))( =−∴= °
−− ° rre rra  

At the minimum of cure where °= rr ; the curve is assigned a 

value of –D where r = ∞  i.e. infinite then )( °−− rrae  can be 
re °

1  

which is 0; 

∴ EP = 0 where r =  ∞  
If –D is removed from the initial equation then r = r0 will 
yield Ep = 0 and r = ∞  will yield Ep = D an the change in Ep 
will still be D on the graph  
Waiting the equation in another way; 
Ep = D [1 – e-x]2 – D 
Any exponential term can be expanded  
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Therefore for some terms up to n = 3 e- x  = 1 – x + 
2

!

3

!

2

!

3

!

2

32
1[1[;

32 ⎟
⎟
⎠

⎞
−+−−=−

xxxEpxx  

2
32

62
1[1[ ⎟

⎟
⎠

⎞
−+−−=

xxxEp  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

6262

3232 xxxxxx  

6

42
3

62
3

4

4

4
2

x

xx

xxx

+

+−

+

 



4
2

12
7
x

x +  

DxxDEp −++= .....)
12
7( 42  

Then u can differentiate writ x and D will disappear  
 
A vibrating diatomic molecule is held by its bond strength 
and by hooke’s law, this force; - F = Ky (y = distance of 
expansion °− rr  
Ep = ( )

2
2
1kyydyKdyF y ∫∫ ==−  

i.e. 1

1
1 +

+
= nn x

n
dxx  

Hooke’s law deals only with the 1st …………. approximation  
22

2
1 DxkyEp ==  

222
2
1 )( °−== rrDakyEp  

= 222
2
1 )()( °° −=− rrDarrk  

a = 
2D
k  

f(x) = μx + δ x + Kx = 0 

0
μ
kx

μ
αx =++=

∞

 +  

w = circular frequency = 2πy → (linear frequency cycle/s) 

∴ k = μω02 where w = 2πv 
( ) ( )

D
w

D
ya

22
2 22 μμπ ο==  

The dissociation constant is inversely…………………… bond 
 
 
 
 
 



    HYBRIDISATION 
 
Hybridisation is the mixing of orbitals which overlap when 
forming bonds.  The sum of the starting hybridized orbitals 
= sum of hybridized orbitals.  The energies of hybridized 
orbitals are equivalent. 
 
For sp, angle is 1800 to minimize repulsion.  The best way to 
arrange 2 hybridized volume in space such that the e – e 
repulsion is minimal is at 1800 i.e. 360/n where n = no of 
orbitals. But for 4 orbitals, 360/n is no longer applied because 
of too much repulsion.  The array is that of a tetrahedral  

Correction f(x)  = velacckx;αμ xxxx ==++
°∞°∞

 

μ = reduced man; α = frictional coeff; x ; displacement 
calculation of angle of hybridized orbitals  

φ = as + bp ( a and b are mixing coefficient of S and P 
orbitals 

1bpbp/asas11 >=++<=>< φφ  
    = 1ps2abppbssa 22 >=<+><+><  
They don’t belong to same symmetry i.e. >< ps  = 0 

∴a2 + b2  = 1 
For Sp3;  ps 4

3
4
1  

2
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2
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4
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psbpas 2
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2
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1 +=+=∴φ  
Two hybridized orbitals where orientations of P orbitals are 
different  
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2

cos
b
a−

=θ  

For sp3 cos θ = 1
3
1

3
4

4
1 45.109; D=−=• θ  

For Sp2 hybridisation; a2 + b2 = 1 
sp = ps 3

2
3
1  

120θ;
b
acosθ 2

1
2
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3
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2

=−=×−=
−

=  

sp = s2
1  p2

1  
a = 2

12
2

1 ; =a  

b = 2
12

2
1 ; =b  

cos θ = - 0
1
2

2
1 1800;12

=−=−−=
b
a  

Monovalent elements can easily combined with the 
tetrahedron e.g. CCl4, CF4, CH2Cl2, CH3Cl, the tetrahedron can 
react with its type 
 
By virtue of hybridization; carbon not only changes its 
valence, it also forms homologous series 
 
 
 
 
 
 



 
 
 
 
 
 
For sp3d2  (square planar) e.g. XeF4 
3d 
sp 
3s 
sp3d3: 7 orbitals destroy orbital balance.  It will be a distorted 
octahedron 
 
 
  Computational aspect 
   
  Conjugated system  
Looking at a 2-atom system  
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c
c

x
x     x = + 1 

mount c1 c2 into the rows 
xc1  + c2 = 0 implies c2 = xc 
c1  + xc2 = 0  
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  can only obtained for this kind of cpd (i.e. x varies 
for others) 
 

To give the coefficient values, normalize the ψ 

∑ Cn2 = 1    {c12 + c22 + 2c1c2 S = 1} 
      so small  = 0  
c12 + c22 = 1 for 2 atomic system ……….(11) 
c2  = -xc1 …(1) 
substitute (1) into (2) 
c12 + x2c12 = 1 
c12 (1 + x2) = 1 

c1 = 
2x1

1
+

 

when x =  - 1 

c1  = 
2

1 ; c2 = -1 xc1 = (-1
2

1 ) = 
2

1  

when x =  + 1 

c1  = 
2

1 ; c2 =  (-1
2

1 ) = -
2

1  



It’s the ground state that has pluses through out  
 x c1 c2 E  

ψ+     ψ2 
 
 
 

ψ- ψ1 

+ 
1 
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2
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2
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2
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2
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S-1
- βα  

 

S-1
- βα  

 
 
 
 

↑↓ (i.e. from 
each carbon, 
c = c) 

 

ψ2 = 
2

1 φ1  - 
2

1 φ2 

ψ1 = 
2

1 φ1  - 
2

1 φ2 

To calculate the charges on each atom  
c1, c2 are the i’s .  The molecular orbitals are the j’s 
electron density is defined as qj = jci

2

j
jn∑  

∴ for qi in ground state = 1
2
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For excited state, e-  - e-/nuclear – nuclear repulsion is not 
taken into account hence result is the same  

Charge density, ∑1 = 1 – q 

If q is 1; then ∑1 = 0 which means  
Because atoms of molecule has a charge  
Unless sth is done to move electrons  

B. O. 
B.L
1α  

P = njcick 

e12 = 0.1
2

1
2

12 =⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛  for ground state  



  slope 
B. L = A – X B O  
 
For 3 atom  
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xC1 + C2 = 0 --------------------------(i) C2  = -xC 
C1 + xC2 + C3 = 0 ---------------------(ii) C3 = C1 – xC2  
C2 + xC3 = 0  ----------------------------(iii)  -C1 + x2 C1 = c1 
(x2 – 1) 
 
C12 + C22 + C32 = 1 
C12 ( 1 + x2 + C x2 – 1) = 1 

C1 = 
222 )1(  1

1
−++ xx
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1 2−ψ    

xC1 + C2 = 0 ;   C2 = - Xc1 
C1+ xC2 + C3 = 0; C3 = = -C1 – xC2 or C3 = C1 + x2  
 

If you use equation 3 to get C3 for ψ for x 
22

1
x+

 

E3 = 
S21

2
−
− βα  

E2 = α  

E1 =  
S21

2
−
− βα  

E2 – E1 = β2  if S is set to 0, B is –ve therefore the transition 
energy is a +ve value  

αβααβααλ −
+

−
+
+

−=
SS

v
21

2;
1

2  

 
e–e repulsion is not taken into account. So, the 2nd and 3rd are 
equivalent coulombic integral being dealt with. 
 
E resonance = E allyl – Eq ethane (E evuivalent) 



To cal; E for allyl cat; multiply the no of E by every energy 
level.  Total energy = E1 set S = 0  

Ethene = βαα +−   E1 S+
+

1
βα  

Ecation   = 2 ( )βαβα +−+ 2)2(  
    2 ])12(( βαα −+−  

    2 x 0.414 x β = 0.820β β = -2.3 eV 
 

Allyl radical; Eπr = 2 αβααβα −+−++ )(2)2(  
       2 ( ββ 828.0)12 =−  
 
All have the same stabilization energy; it should not be 
because of repulsion 
 

Anion, E = 2 αβααβα 2)(222( −+−++  
    = ββ 828.0)12(2 =−  

q1 = ∑nij2 when n; = ground state  

q1 = 2 ( ( ) 2
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q2 = 2 ( ( ) 1)(000) 2
2
322

2
2 =−++  

q3 = 2 ( ( ) 2
12

2
12

2
12

2
1 )(00) =−+−+  

 
According to resonance theory of organic chemistry, there is 
an oscillation of charge  
Molecular orb theory says no; that the charges are 
permanently on 1 and 3, and that these ext with nucleophiles  
The resonance theory is not supported by experiment 
 



X-ray supports M – OT 
Excitation of the electron from E1 to either E2 or E3 changes the 
q of the relative of the difference ext. st cannot be compared 
relative to the g.s.  
Calculate excited states for cation  

Allyl cation ⇒   0
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2
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Allyl radical  
q1 = 2( 2

1 )2 + 1 (
2

1 )2 + 0 ( 2
1 )2  = 1.0 

q2 = 2( 2
1 )2 + 1 (0)2 + 0 ( 0.1)2

2
2 =− )2  = 1.0 

q3 = 2( 2
1 )2 + 2 ( =+− 2

2
12

2
1 )(0) 1.0 

 

∴ we have reactive to an electron seeking reagent the charges 
are spread from 1 and 3 and the activity is thus centered. 
 
Bond order for Allyl radical  
P12 = 2 ( 2
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For cation, B. O.  
P12 = 2 ( 2
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P23 = 2 ( 2
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2
2 )()()() 0)0(0 =−+−+  

Rb. BL = A – D.BO (Since BL will be the same is allowed 
not) 
But all the BL ought not to be the same because there’re 
different no of e’s in the system, but there’re the same because 
e-e repulsion is ignored  
 
The wave defines the nature of x 
 
Cyclopropene 
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Rb .E = 
xS
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If S is O; E = αβ and α+ 2β 



ΔEπrcation = 2(α + 2β) – 2 (α +β) 

 2α + 4β – 2α - 2β = 2β 
  

ΔEπresradical = 2(α + 2β) +(α -β) – 2(α + β) -α 

 2α + 4β + α - β -2α - 2β - α 
 



ΔEπresanion = 2(α + 2β) + 2 (α -β) – 2(α + β) -2α 

 2α + 4β + 2α - 2β -2α - 2β - 2α 
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xC1 + C2 + C3 = 0 
C1 + xC2 + C3 = 0  
C1 + C2 + xC3 = 0 
 
(x + 1) C1 – (x -1) C3 
(x - 1) C1 – C3) = 0 
C1 = C3 
Multiply (1) by x to give  
i.e. x2C1 + xC2 + xC3;  then (1!) (3) 
C1 + C2 + xC3 
(x2 -1) C1 + (x -1) C2 = 0 (x +1) (x -1) C1 + (x – 1) C2 = 0 
(x -1){ (x + 1) C1 + C2} = 0 
C2 = -(x + 1) C1 
 
Rb 12

3
2
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2
1 =++ CCC  

i.e. 1)1( 2
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2
1

22
1 =++++ CCxC   

2)1(

1
21
+−

=
x

C  

when x is -2; C1 = 3
1 , C3 = 3

1  and C2 = 3
1  

Cation   radical   anion  
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For anion, excitation 1
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2
1 ψψψ  

How can you distinguish g.s. and exc st. by e′spin resonance 
since the same unpellied e′s are present they do not 
distinguishable by e′  spin res- because they will have the same 
intensity and magnetic moment. However, if e′  densityis 
carried out, it will be distinguish. 
 
Electron density for cation 
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For radical exc. State is 1
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For anion exc. State is 1
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Electron density for radical g.s. 1Σ  
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B. O. for anion  
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B. L. = A – D B. O. ∴ If B. O. = 0.0, B. L. = A 
A is often 1.517    i.e. BL(A0) = 1.517 – 0.18 x B. O.  
 
For 4 atoms  
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= x {x(x2- 1) – 1 (x – 0)} – 1 {1(x2 – 1) – 1 (0 – 0)} =0 
= x {x3 – x 
= x4 – x2 – x2 – x2 + 1 = 0 
= x4 – 3x2 + 1 = 0 
= x4 – 3x2 + 1 = 0 
let y = +x2 
y2 – 3y + 1 = 0 
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Possibilities of excitation are: 
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For 2 transition Energy 

E3 – E2 = α - 0.618β - α - 0.618β = -1.236β But  

β = -2.3e 
So E3 – E2 = - 1.236 x – 2.3eV = + 
(+ve E = absorption; -ve is emission  

E3 – E2 = hv = 
λ
hc   ∴ λ can be determined  

α = -5.0 eV 

β = - 2.3eV   Rb 1 eV = 1.6 x 1019J 



 
For weighing coefficients  
xC1 + C2 = 0  
C1 + xC2 + C3 = 0 
C2 + xC3 + C4 = 0  

(4) is not used to determine because C4 = 
x

3(−  and if x = 0,  

C4 = ϕ 
From (1) C2 = - xC1  
From (2) C3 = - (C1 + x2C1) = -C1 (1 – x2) = C1 (x2 – 1) 
From (3) C4 = - (C2 + xC3) = - (-xC1 + x (C1 (x2 – 1)) 
   = xC1 – xC1 (x2 – 1)) 
= C1 (x – x (x2 -1)  
= C1(x – x3 + x) = (2x – x3) C1 

C1 = 1
)2()1(1(

1
23222 =

−+−++ xxxx
 

  



 x C1 C2 C3 C4  

ψ4 1.618 +0.3718 -0.6015 -0.6015 -0.3718  

ψ3 +0.618 +0.6015 -0.3718 -0.3718 +0.6015  

ψ2 -0.618 +0.6015 +0.3718 -0.3718 -0.6015 ↑↓ 

ψ1 -1.618 +0.3718 +0.6015 +0.6015 +0.3718 ↑↓ 
      0

3
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But practically 
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A new matrix develops 
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x (x2 – 1) – 1 ( x – 0) } {1 (x2 – 1) -1 (0 -1) }  
– 1 {1 – 0 – x ( 0- x) + (0 -1)} 
x4 – x2 – x2 – x2 + 1 – 1 – 1 – x2 + 1 
x4 – 4x2 = 0 
Let y = x2 

 y2 – 4y = y (y – 4) = 0 

y = x2 = 0 ⇒ x = 0, 0 

y = x2 = 4 ⇒ x = +2 
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ΔEπres  2 (α + 2β) + 2α - the equivalent in ethane = 2 (α +  

2β) + 2α - 2 (α +  β) - 2α 
More stable than butadiene because of limitation in theory 
being used.  Butadiene because of strain relief should be more 
stable 
Rb – n – nuclear repulsion is not considered only n – e 
interact 
xC1 + C2 + C4 = 0   (i) 
C1 + Xc2 + C3 = 0   (ii) 
C2 + xC3 + C4 = 0   (iii) 
C1 + C3 + xC4 = 0   (iv) 
Rewrite (i) 2C2 = -xC1  ;  
C12 + C22 + C32 + C42 = 1 
2C12 + 2C22 = 1 

note C2 = - 2
1xC
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Multiply by 4 
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Frontier Electron hypothesis states that for a given molecule, 
the terminal atomic orbital will determine the stereochemistry 
of the molecule  
Homo of butadiene is  

ψ4 

ψ3 

ψ2 
↑↓ 

ψ1 ↑↓ 

 

Suppose we excite to ψ3 

 

ψ3 ↓ 

ψ2 ↑↓ 

ψ1 ↑ 

 
Cyclo propene 

ψ3 = ½ φ1 - 2
2 φ2 + ½ φ3 

ψ2 = ½ φ1 - 2
1 φ3  

ψ1 = ½ φ1 - 2
2 φ2 + ½ φ3 

 

ψ3 = Aekx + Be-kx (note α = k    ; k = λ
π2 ) 
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  PERTURBATION THEORY 
 
Exact solution of Schr¨odinger’s equation is possible for only 
a very small proportion of the problems of interest in the 
physical sciences. Great importance therefore attaches to 
approximate methods of solution and among these methods 
perturbation theory, which is also extensively used in classical 
mechanics, occupies a very important place. The 
technique can be applied where the Hamiltonian can be 
written as a sum of two parts, a simple part which if present 
alone would generate a soluble Schrodinger equation, and a 
second part consisting of one or more relatively small 
additional terms. The approximate behaviour of the system 
can then be obtained by considering the soluble part as giving 
the dominant behaviour and treating the actual behaviour as 
a relatively minor deviation, or perturbation, from this 
calculable behaviour. The perturbation can be estimated by 
studying the small, complicating additional terms in the 
second part of the Hamiltonian.  



The analysis of time-independent and time-dependent 
perturbations is different and we treat only the former type of 
problem here. 
 

Time-independent perturbation theory 
 

We have a Hamiltonian operator of the form: 
ˆH= ˆH (0) + ˆH _    (1) 
where the energy associated with ˆH (0) is large compared 
with that derived from ˆH _.  
In order to facilitate the algebra we write Equation (1) in the 
form: 
ˆH= ˆH (0) + λˆH_      (2) 
λ is an arbitrary parameter, which we use to keep track of the 
order of the perturbation, 
i.e. the degree to which our approximate Hamiltonian  
( ˆH (0) + λˆH_) approaches the true Hamiltonian ( ˆH ). 
Once it has performed its labelling duty λ is simply set equal 
to 1.  
We seek eigenfunctions |ψk_ and energies Ek which satisfy 
the Schr¨odinger equation: 
ˆH|ψk_ = (ˆH(0) + λˆH_)|ψk_ = Ek|ψk_         (3) 
In addition to the assumption concerning the relative 
magnitudes of the energies associated 
with ˆH (0) and ˆH _ we also assume the following: 
i) ˆH does not depend explicitly on the time. 


