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PHS 222: THERMAL PHYSICS 

CONTENT 

- Heat Energy; Conduction, Convection, Radiation 

- Zeroth Law of Thermodynamics and temperature definition. 

- The first Law (of thermodynamics) :- Work, Heat, internal Energy. 

- Carnot cycle and the second Law:- Entropy and irreversibility. 

- Thermodynamics potential  

- Quantitative discussion of phase transitions. 

- Elementary kinetic theory of gases; Boltzmann counting, Maxwell-Boltzmann Law of 

distribution of velocities, simple applications. 

 

Heat Energy  

What is Energy? This is capacity of matter to perform work as a result of its motion or 

position in relation to forces acting on it. In other words, if you move a load “Mg” through a 

distance “h” you then have done a work Mgh! 

Energy associated with motion is known as kinetic energy; while energy associated with position 

is known as potential energy.  

Energy exists in various forms: mechanical, thermal, chemical, radiant, atomic, etc. Thermal 

energy therefore, is the energy derived from heat.  

Heat can be transferred in various forms/ways such as conduction, convection and 

radiation.  

 

CONDUCTION 

Conduction can only take place if there is difference in temperatures. It occurs through free e-s 

(thermal agitation) 
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Consider a material of cross section A and thickness L 

 

 

 

 

 

 

 

 

 

 

 

If body 1 is kept at temperature T1, a higher temperature them body 2 at   , then the heat current 

will move from body 1 towards body 2. After a while, the temperature at points within the rod 

will be found to decrease uniformly with distance from the hot (Body 1) to the cold (Body 2) 

face. However, the temperature remains constant with time at each point. This is the so called 

steady- state heat flow. 

The rate of flow of heat through the rod in the steady state is proportional to the area, the 

thickness of the rod and temperature difference: i.e. 
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Where,  

  = thermal conductivity of the rod material. 

Now,   is known as the quantity of heat flowing through the rod per unit time. It is also known 

as heat convent.  

In a case of a thin layered material perpendicular to the direction of flow; if x is the 

coordinate along the flow path, ∆x the thickness of the layer and A the cross sectional area 

perpendicular to that path then, 
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Where, 

∆x is the change in temperature. The negative sign is due to the fact that the temperature 

decreases in the direction of increasing x (note that ∆x and ∆T are positive). 

 

The direction of heat flow in the direction of decreasing x.  

 

The quantity: 

                       ∆T/∆x …………………………. (6)     

 is known as temperature gradient. 

S. I unit of rate of heat flow is Joule per second (J/s) 

⇒   
    

   
   

(      )    

          
                            ---------------- (7) 

 

 

CONVECTION 

A process of heat transfer in which there is actual motion of material is known as convection. 

Some examples are: the hot air furnace, the hot-water heating system, flow of blood in the body 

system, Convection air current, boiling of water in pot (Conduction and Convection) 

We can distinguish two types of convection : 

(a) Forced convection: This is a process in which a material is forced to move by a blower or 

pump leading to transfer of heat. 

(b) National or free convection:- this is a process in which a material flows due to differences 

in density.  

Unlike in conduction, the heat equation convection is very complex, however if one defines a 

convection coefficient h, then. 

H = hA∆T ……………………………………… (8) 

Where H is the heat gained or lost by convection by a surface per unit time  

A = Area of the surface 

△T = Temperature difference. 

 



RADIATION  

The process whereby there is a continuous conversion of energy from the surface of a material is 

known as radiation. Thus radiant energy (electromagnetic waves) is emitted at the speed of light 

through vacuum and air. When radiant energy falls on an opaque material, it is absorbed by the 

material resulting in transfer of heat (to the material). 

The radiant energy emitted by a surface per unit time and per unit area, depends on (1) the nature 

of the surface and (2) its temperature.  

The rate of radiation at low temperature is small implying a relatively long wave length radiant 

energy. As temperature increases, the rate of radiation also increases in proportion to the fourth 

power in temperature; i.e.  

   H   T
4 

……………… (9) 

Also,    H    A………………. (10) 

H depends on the nature of the surface described by a dimensionless number, e, which is 

between 0 and 1. Hence, 

 H   e , the emissivity ………..(11) 

       e T
4
 ………. (12) 

   H =     e T
4
………. (13) 

 is a constant known as Stefan-Boltzmann constant 

H has the units of power (energy per unit time) i.e.   has units: W.m
-2

, k
-4

 …….. (14) 

The emissivity for dark, rough surfaces are higher than those for light, smooth surfaces. 

If a body is completely surrounded by walls at a different temperature Tw, then the net rate of 

loss (or gain) of energy per unit area by radiation is: 

 H net = A e    
  – A e    

    = A e     
    

 ) ……………….……. (15) 



Practice  Question 

1. A slab of a thermal insulator is 100cm
2
 in cross- section and 2cm thick. If it has a thermal 

conductivity of 0.1 J.s 
-1

 m
-1

 (C
0
)
-1

, and a temperature difference of 100
0
C between opposite 

faces; calculate the heat flow through the slab in a day. 

2. A solid wood door has dimensions 2m x 0.8m x 4cm and a thermal conductivity k of 0.04 

J.S.
-1

.m
-1

(C
0
) 

-1
. The inside air temperature is 20

0
C and the outside air temperature is -10

0
C. 

What is the rate of heat flow through the door, assuming the surface temperature are those of the 

surrounding air? 

3. A vertical steam pipe of outside diameter 7.5cm and height 4m has its outer surface at a 

constant temperature of 95
0
C. The surrounding air is at atmospheric pressure and at 20

0
C. How 

much heat is delivered to the air by natural convection in 1hour? 

4. The emissivity of tungsten is approx. 0.35. A tungsten sphere 1cm in radius is suspended 

within a large evacuated enclosure whose walls are at 300k. What power input is required to 

maintain the sphere at a temperature of 3000K if heat condition along the supports is neglected? 

 

Laws Of Thermodynamics 

What is Thermodynamics? 

Thermodynamics is the branch of physics that describes and correlates the physical   properties 

of macroscopic systems of matter and energy. In other words, it is concerned with heat and 

related thermal phenomena. The various laws of thermodynamics enable us to accurately 

describe processes involved in heat energy. 

 



The Zeroth Law:  States that if two systems A and B are in thermal equilibrium with a third 

system C, then they are in equilibrium with each other i.e. A is in equilibrium with C or B is in 

equilibrium C. We can then determine the direction of heat flow when two systems (A and B) are 

put in contact. One system A is said to be hotter than another B if heat flows from the former (A) 

to the latter (B) when they are in thermal contact. 

This then allows us to introduce a parameter, called an empirical temperature, which is the same 

for all bodies that are in thermal equilibrium with each other. This is done by constructing a 

system, called a thermometer which allows us to ascribe a number to the temperate. 

The first law of Thermodynemics 

(Law of conservation of Energy) 

The Law tells us that heat is a form of energy which is conserved. The 1
st
 Law applies to closed 

systems, i.e for a given amount of matter, and is expressed in the form of an energy balance 

equation: 

            --------------------------16 

The above equation states that a small change (du) in the internal energy (u) of a closed system is 

the sum of a small amount (dq) of heat supplied to the system and the work performed (dw)) on 

the system. 

Note that, dq may be positive or negative and that dw can assume many different forms 

depending on the type of action to which the system is subjected. 

Here we will assume work done to be  

              ---------------------- 17 

Where Pext = external pressure applied in order to perform work, which causes a change in 

volume dV. 

The negative sign implies compression (dV<0) when dw should be positive 



Now equation 16 becomes   

                     -------------------- 18 

                 depending on whether the internal pressure, Pint of the system is higher or 

lower than Pext  respectively. In particular, if 

Pext = Pint  = P -------------- 19 

Then the piston will not move spontaneously but may be displaced reversibly. 

A reversible process is one that can be retraced completely without effecting any permanent 

change in the surroundings. 

The quatities or variables U, P, and V are called functions of state or state variables. The absolute 

temperature T (in Kelvin) is also a function of state. 

Functions of state can either be: 

1. Extensive functions of state: These are those that are proportional to the size or qauntity 

of a system or substance; e.g. U, V, n (no. of moles). 

2. Intensive functions of state: Those that are independent of system size: e.g. T,P, V/n, U/n 

              ̅    molar volume 

             ̅ = molar energy. 

For any substance that is uniform in composition and physical properties, then the macroscopic 

state of such system can be determined by specifying two intensive variables E.g. T and P: such 

that                     ̅      

                ̅       ------------------------- 20 

The equation of state of a system can therefore be written as :  

           
 

 
   ̅    

  

 
  (For ideal gas) --------------------------------------21 

        
 

  ̅̅ ̅̅     ̅          (for real gas e.g. van der Waals)-----------22 



Where b is the effect of finite size of the molecule,  
 

 ̅ 
 is the effect of the attractive (dispersion) 

forces. It follows that from the ideal gas model, 

             ̅    ̅     -------------------------------------------------23 

We can now write on equation of state in a PV – diagram where, for each T, the P-V relationship 

describes a curve, called an isotherm. The PV – diagram can also be used to represent a 

reversible change of a system. Each point (V, P) corresponds to definite values of both T and U. 
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Figure 3 
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For a finite change of state, moving from A to B, the net amount of PV – work is equal to the 

area under the curve: 

W = ∫   
 

 rev. = - ∫    
 

 
 = + ∫    

 

 
  ----------------------  (24) 

We see that the value of W depends on the path leading from A to B, i.e. W is not a function of 

state. 

Any change in U, 

ΔU = UB  -  UA  ------------------------------ (25) 

Depends only on the initial and final states, not on the path connecting them or upon whether the 

process is reversible or not. Then: 

P 
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P 

Figure 4 



ΔU = q +W ------------------------------------ (26) 

At constant pressure (where the piston is free to move),  

W =  - PΔV   

and  

ΔU = q- PΔV    --------------------------(27) 

 

Alternatively,  

                                             -------------------- (28) 

where H represents enthalpy or heat content.  Obviously, 

            ---------------------------------------------------  (29) 

We can define heat capacity C as; 

    
     

  
 -------------------------------------------------- (30) 

 ̅ = molar heat capacity. 

The specific heat can be defined at constant pressure or at constant volume. 

     
   

  
   (

  

  
)
 
 ------------------------------- (31)  

This is isochoric heat capacity (dV= 0) 

     
   

  
   (

      

  
)    (

  

  
)
 
 --------------(32) 

This is isobaric heat capacity  

For ideal gas:  ̅     ̅      and    ̅       

Hence,   ̅      ̅         --------------- (33) 



  Therefore,  

                     ̅   
  ̅

  
   

  ̅

  
          ̅      ----------------------- (34) 

The second Law of Thermodynamics and Entropy 

There exist many statements of the 2
nd

 Law of thermodynamics; all of them essentially, are 

equivalent. For example, Lord Kelvin postulated that: “No process is possible whose sole result 

is the conversion of heat to an equivalent amount of useful work” 

Work can of course always be converted to heat, for example in the form of frictional losses, but 

Kelvin‟s  statement tells us that it is impossible to retrieve this heat and convert it back entirely 

to work. 

To understand the consequences of the 2
nd

 Law, we shall investigate a cyclic process known as 

the Carnot cycle. 

A Carnot cycle consists of four reversible steps: two isothermal and two adiabatic strokes carried 

out by a simple heat engine. (See figure 5) 

It requires therefore 2 heat reservoirs (thermostats of “infinite” heat capacity) of temperatures T1 

and T2 with T1 > T2 and a cylinder containing the working substance which will be assumed to 

be „n‟ moles of a perfect gas. 

 

 

 



    

 

 

 

  

 

 

                                                     Figure 5 

The process can be represented in a PV-diagram as shown figure 5. 

Suppose the cycle starts at point A (Temperature T2) where the cylinder is not connected to 

either T1  or T2. The gas is then slowly and adiabatically compressed until its temperature 

reaches T1, at which point it is brought in thermal contact with reservoir T1. Then follows a 

reversible isothermal expansion along BC, during which heat q1 is absorbed from the reservoir 

and, an adiabatic expansion along CD. At that point, contact is made with reservoir T2 and 

during the subsequent isothermal compression back to point A, heat –q2 is lost by the gas and 

absorbed by the reservoir.  

Now, according to the 1
st
 Law, the amount of PV- work W, performed by the gas on the 

surrounding must be equal to: 

                q1 + q2  -----------------------------------------(35) 
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Recall that along the isotherm the internal energy of a perfect gas is constant so that any heat 

absorbed (evolved) should exactly match the PV work done (absorbed). 

Thus:  q1 = ∫    
 

 
 = nRT1 ∫

  

 

 

 
  

                          =         
  

  
  ---------------------- (36) 

And similarly. 

                         q2 =           
  

  
  -------------------------------- (37) 

Let us now consider an infinitesimal        adiabatic compression or expansion of the gas: 

Since              ------------------------ (38) 

                               (see  18) -----------------------(39) 

At the same time, this change brings about a change in temp, dT such that: 

                   ( see 31) ---------------------- (40)  

At each point in the PV- diagram,  

                      ----------------------------  (41) 

So that small simultaneous change in P, V, and T will be given by 

                               ---------------- (42) 

Substituting       
  

  
      

  

  
 ---------------- (43) 



Gives: 

              
  

  
     ----------------------------- (44) 

Or equivalently: 

VdP =  ⌊  
  

  
⌋               =  [ 

     

  
PdV] ------------ (45) 

        
  

  
               (see   ) ------------------ (45b) 

Where    
  

  
 ------------------------------(46) 

From (45) 

   

 
       

  

 
 ------------------------------- (47) 

                             --------------------------(48) 

Or                     -------------------------------(49) 

Thus, along a reversible adiabatic: 

               --------------------------------- (50) 

Since γ is obviously > 1, adiabatics are always “steeper” then isotherms, for which PV = 

constant. 

Now for an adiabatic perfect gas, we can write: 

    
        

  ------------------------- (51) 

and      
        

  -----------------------------  (52) 

  By dividing (51) by (52), we obtain 
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 --------------------- (53) 

Note that A and D lie on the same isotherm and so do B and C, so that  

            
  

  
 

  

  
   -----------------------------  (54) 

and     
  

  
 

  

  
 ----------------------  (55) 

Hence (
  

  
)
   

  
=  (

  

  
)
   

---------------  (56) 

or    
  

  
 

  

  
  -----------------------------(57) 

Now, from eqn (36) and (37), we see that  

 
  

  
 

  

  
 (For perfect gas) ---------------------------  (58) 

This is known as the Carnot – Clausius theorem. 

Now let us consider a body (that is not real gas) undergoing an arbitrary cyclic process which is 

not necessarily reversible. The body is a closed system that may possess any degree of 

complexity. Imagine that the heat absorbed or ejected during the various stages of the cycle is 

supplied or drained off by an auxiliary cannot engine containing an ideal gas as the working 

substance. 

The engine operates reversibly between the body and a large heat reservoir at temperature To and 

carries out a very large number of infinitesimal Carnot cycles until the main cycle C, is 

completed 
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For each such cycle, 

        
  

 
…………………………….(59) 

T is the momentary local temperature at which heat    is absorbed by the body. Upon 

completion of the main cycle C, the total amount of heat dispensed by the reservoir is? 

∮    =   ∮
  

 
……………………………….(60) 

According to the 1
st
 law, since both the body and the Carnot engine would have returned  to their 

respective original stokes after completion of the cycle C, the net amount of work performed in 

the main cycle and the Carnot cycles together should be equal to: 

W= ∮  + ∮         = ∮   ……………………….. (61) 

ie, W equals the net amount of heat absorbed from the reservoir. But then, the 2
nd

 law demands 

that ∮   cannot be +ve, and hence, ∮     ≤ 0…………….(62) for any cyclic process. 

In particular, if C is a reversible cycle, driving the process backwards would lead to the 

additional requirement: 

∮    ≥0…………….(63) 

Both conditions can only be met simultaneously if:  ∮  
   

= 0…………….. (64) for any 

reversible cycle. 

The above property is the hallmark of a function of state with exact differential 

                     
     

 
…………………………….(65) 

This new form of state, S, is called the entropy of the system. It is an extensive quantity, 

expressed in J/K. The difference in the entropy of a system between two states A and B is: 

          SB - SA = ∫   
 

 
 = ∫

     

 

 

 
………………………………….. (66) 

For a reversible change in a closed system: the 1
st
 law can be reformulated to be: 

                   ………………………………………… (67) 

   ⇒           –     …………………………………………(68) 

Also, we can now write cv and cp in terms of the entropy: 

cv =                  --------------  (69) 

cp =            

 

 



From equation  (69), two expansion coefficients may be defined thus: 

The coefficient of thermal expansion:   

    
 

 
 (

  

  
)
 
              

The coefficient of isothermal compressibility, K 

K =  
 

 
 (

  

  
)

 
                

 

For an irreversible cycle, we see that 

∮      ………………………………………..(70) 

Consider a system comprising of an irreversible (A-B) reversible (B-A) processes 

 

 

X  
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  (2) reversible 
  
 
 
 
 
 
 
 

∮     = ∫
       

 

 

 
 + ∫

      

 

 

 
   0 ……………………………….. (71) 

Which is equivalent to: 

SB - SA = ∫
     

 

 

 
   ∫

       

 

 

 
………………………………….......... (71b) 

In general, 

     
  

 
 ……………………………………………………………………… (72) 

In particular, for an adiabatic change (    ) 

          …………………………………………(73) 

A change in the total entropy                then always has to obey the inequality 

                (   )u,v   0 ………………………………………..(73b) 

(1)Irreversible 

A 

X 

B 



The 2
nd

 law may now be stated as follows: During a spontaneous process, the total entropy of an 

isolated system increases. It remains constant for reversible changes of state. At this point, it may 

be instructive to mention an alternative approach to the concept of entropy, which uses the fact 

that matter is actually composed of atoms and molecules. This formulation is due to L. 

Boltzmann: 

                ……………………………………………. (74) 

ie The entropy of a system is proportional to the logarithm of number of microstates  

where K = Boltzmam‟s constant  = 
 

 
  (L = Avogadro‟s constant) 

 

W = number of microstates in a given macrostate. 

This formular provides the bases for the development of statistical thermodynamics.  

We note that for two systems 1 and 2 

                       

                  

          

 
THERMODYNAMIC POTENTIAL 

The equilibrium conditions of a system are governed by the thermodynamic potential functions. 

These potential functions tell us how the state of the system will vary, given specific constraints. 

They include: internal energy, enthalpy, Helmholtz and Gibbs functions, and chemical potential. 

The differential forms of the potentials are exact because we are now dealing with the state of the 

system. 

Internal Energy, U 

This is the total internal energy of a system and can be considered to be the sum of the kinetic 

and potential energies of the entire constituent parts of the system                  

     ∑    
       ∑    

    …………………………………….. (1) 

Using the definition of internal energy and the 2
nd

 law of thermodynamics, we obtain 

                   ………………………………………….. (2) 

           –      …………………………………….. (3) 

Enthalpy, H 

This is sometimes called the heat content of a system. It is a state function and is defined as: 



                       ……………………………………………….. (4) 

We are more interested in the change of enthalpy dH, which is a measure of the heat of reaction 

when a system changes state. 

                             ……………………………………………… (5) 

Helmholtz free Energy, F 

This is the minimum amount of work obtainable in which there is no change in temperature. It is 

a function and is defined as: 

      –     ……………………………………………………. (6) 

The change in Helmholtz free energy is given by 

 

         –      –      

         –                             …………………….. (7) 

 

Gibbs Free Energy, G 

This is the maximum amount of work obtainable in which there is no change in volume It is a 

state function and is defined as: 

      –                      

                                              –      –            –       (see equations 5 and 3) 

 

It is obvious that  

                  G =    +        …………………………………….. (9) 

 

Chemical Potential 

This is important when the quantity of matter is not fixed (e.g we are dealing with a changing 

number of atoms within a system). When this happens, we have to modify our thermodynamic 

relations to take account of this. 

         –            

                                                                  –               ………….. (10) 

         –            

                             



This means that there are several ways of writing the chemical potential   

  (
  

  
)
   

 (
  

  
)
   

 (
  

  
)

   
   ………………………………… (11) 

             N = number of molecules 

We can also show that the chemical potential   can be written: 

      = G/n …………………………………… (12) 

where n = number of molecules . 

The chemical potential   is the Gibbs free energy per particle, provided only one type of particle 

is present. 

Now if U is regarded as a function of S and V, its partial derivatives can be identified from the 

above formula for dU as 

(
  

  
)

 
            (

  

  
)
 
                       

                                         (from equation 2) 

Similarly from equation 8, 

(
  

  
)
 
              (

  

  
)

 
                        

Also from equation 7, 

(
  

  
)
 
              (

  

  
)

 
                          

Recall that : 

   

    
   

   

    
                        

When applied to the function U (S, V), this means 

 
   

    
   

   

    
                        

or from equation 13, 

 (
  

  
)
 

  (
  

  
)
 
                       

This procedure is called cross-diiferentiation and the type of thermodynamic relationship that is 

obtained in this manner is known as a Maxwell relation. The validity of such formulae rest on the 

fact that S is a state variable. 

Similarly, application of this theorem to dG and dF produces two more Maxwell relation: 



 (
  

  
)

 
   (
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     (

  

  
)

 
  (

  

  
)
 
                    

                         (using equation 14 and 15 respectively) 

Also from dH, 

(
  

  
)
 
   (

  

  
)
 
                              

 

PHASE TRANSITIONS 

A change of phase of a system occurs when the system changes from one distinct state in to 

another. This change of phase can be caused by many different factors e.g. temperature changes 

can cause a phase change between a solid and a liquid; applied magnetic fields can cause a phase 

change between a super conductor and a normal conductor. 

Phase Equilibrium of a Pure Substance  

Consider a system with a fixed amount (n moles) of a single chemical component (e.g. water), 

distributed between two phases in equilibrium: liquid (L) and vapors (V), say, and contained in a 

cylinder with freely movable piston. 

 P 
 
 
  
 
  
  
  
 
 
 
 T            
 
 

The cylinder plus contents are maintained at ambient pressure P and temperature T (the latter 

through a thermal contact with a heat reservoir). Two conditions for phase equilibrium are 

immediately obvious: (1) thermal equilibrium between L and V requires that TL = TV = T 

(otherwise heat would flow spontaneously between L and V, leading to a further increase on St = 

SL + SV + SSURR). (2) Mechanical equilibrium which requires that PL = PV = P. If this were not 

the case the pressure difference could be utilized to perform work which, when dissipated would 

1 mol 

qrev 

L 

V 



also generate entropy. This is still not enough to ensure phase equilibrium. This is a dynamic 

equilibrium for which rate of evaporation from L = rate of condensation from V. 

Now consider a reversible process in which one mole of liquid is transferred to the vapor phase 

by slowly raising the piston while simultaneously absorbing heat q rev. from the reservoir. For 

this closed system the energy balance can be put in the form:  

       Δ ̅   Δ ̅   Δ  ̅             

Where                 Δ ̅    
̅̅̅̅     ̅̅ ̅̅  

     Δ ̅    ̅     ̅  ……………………… (2) 

    Δ ̅    ̅     ̅  

 Eqn. (1) may also be written as: 

 (Δ  ̅̅ ̅
   )

 
    Δ ̅                   

Eqn. (3) defines the latent heat or molar enthalpy of vaporization 

Hence, substitution for eqn. (2) and rearranging, gives the required condition, known as material 

equilibrium: 

  ̅     ̅     ̅   ̅      ̅     ̅          

Or 

  ̅          ̅                       

                                   

This is an equation in terms of T and P, which could be solved, in principle, to give P as a 

function of T, where P is the saturation pressure. 

In a P –T or phase diagram, this relationship defines a co- existence line for L/V equilibrium 

  P                 
 
           L V 
       
       

      

                                                         

T 



An alternative approach to the problem of material equilibrium is based on the fact that the G of 

a closed system is at a minimum if P and T are held fixed: ( G)T,P = 0; and may serve to 

illustrate the use of this minimum principle. G can be written alternatively as   

                                  

 Where G is extensive 

                 ……………………….. (8) 

Noting that           are both constant during this change and                

       T.P =            …………………. (9) 

And for this to be zero, we need          

For non- equilibrium states i.e. when T and P are uniform but        

If       , then 

      T.P  =             < 0 if           i.e. G decreases if liquid evaporates.  

This situation arises for (T,P) combinations below the saturation curve in the diagram; here V is 

more stable than L. Conversely, above this curve,         and so L is the more stable phase. 

Thus, the PSat (T) curve divides P – T plane into stability regions. 

This example is illustrative of a more general principle which states that whenever   is not 

uniform, matter will flow spontaneously from places with the higher to places with the lower   

(hence the name: chemical potential). 

Now, let us return to the coexistence curve and see what general conclusions may be drawn 

regarding its functional form. Suppose that the system moves from point A with coordinates T 

and P to a nearby point B, also on the curve, at T + d T, P +d P. 
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Since equilibrium is maintained, it is true that         for this change of state. Now given 

that,       
    

    
 

           ̅          ̅       …………………………………… (10)   

Hence,     ̅        ̅          ̅       ̅     ……………………………. (11 

Therefore,  (
  

  
)
   

  
  ̅      ̅  

   ̅     ̅  
   

Δ  ̅

Δ  ̅
           

Which can also be written as:  

 (
  

  
)
   

   
Δ  ̅̅ ̅    

  Δ  ̅
           

This is the Clausius - Clapeyron equation which relates the slope of the tangent to the Psat Vs T 

curve at each point to the volume and latent heat of vaporization at the same point. It applies 

generally to the so –called 1
st
 order phase transition, i.e. those wih  Δ ̅     and Δ ̅    , which 

is the case for most phase equilibrium of chemical interest. 

What has been said about L/V equilibrium applies equally to solid / liquid (S/L) and solid / 

vapour (S /V) equilibria. For each case, a Clausius- Clapeyron equation can be formulated with 

Δ  ̅̅ ̅
    replaced by the latent heat of fusion (Δ  ̅̅ ̅

   ) and sublimation (Δ  ̅̅ ̅
   ) respectively, and 

P 

P+dP 

P 

T 
T T+dT 

 

 



similarly for the molar volumes of transformation. These equilibria are also represented by 

coexistence lines in a P –T diagram. 

P water / ice 
PL C 
                 
 
Pt             
 S    L                         G               
 
                                                 t 
 
                                                             V 
  
 T  
   

The three curves meet at one point known as the triple point, t (Tt , Pt), where all three phases 

coexist. Two equilibrium conditions:  

                                         

should be obeyed simultaneously at this point, which determine its position unambiguously (for 

water, Tt          6 x 10 
-3 

atm.). 

Another important feature of a P – T diagram is the critical point (C), which marks the 

temperature TC above which vapour can no longer be condensed, no matter how high the applied 

pressure. Only a homogeneous gas phase (G) can exist for T > TC. 

For most substances, the coexistence lines have positive slopes. A  notable exception is water, 

where the melting line has a negative slope because Δ ̅      (ice has a lower density than 

water, that is why it floats), so that increasing the pressure on ice at constant T will eventually 

cause it to melt. 

Now if the vapour is assumed to behave approximately as a deal gas, then 

    ̅V   RT/ Psat  ……………………………….. (15) 

      This implies that      ̅̅ ̅̅   ̅   ̅   hence Δ ̅    ̅  ……… (16) 

Tt TC 



Subs. (15) and (16) into Clausiuns –Clapeyron equation gives: 

     

  
 

    Δ ̅

   
              

Rearranging:  

     

    
 

Δ ̅

 
  
  

  
             

Which is equivalent to: 

       

  (
 
 )

  
Δ ̅

 
                    

If  Δ ̅    or Δ ̅    can be regarded as constant (this is a good approximation with a broad range 

of temperatures), this result implies that a plot of            
 

 
  should produce a straight line with 

negative slope     
Δ ̅

 
. 

If Δ ̅    Δ ̅        Δ ̅      are constant, knowledge of any two of them allows the third to be 

calculated based on the argument that, at the triple point, sublimation of 1 mole of solid can 

either take place directly or proceed in two steps ,namely: as melting followed by evaporation: 1 

mol S   1 mol L   1 mol V. The net Δ ̅ is the same in each case (Hess‟law), therefore: 

Δ ̅    Δ ̅     Δ ̅    

 It Should be pointed out that the phase diagram by itself does not contain sufficient information 

to help us understand the process of phase transformation. It often happens that a phase transition 

does not occur when one would expect it based on the phase diagram. A liquid may persist in a 

metastable super heated or super cooled state, or a vapour may be cooled below the boiling point 

without condensation (supersaturated vapour). These phenomena occur because a new phase 

never appeared in bulk form all at once, but rather changes from the “parent” phase in the form 



of small bubbles, crystals or droplets which initially have a high, energetically unfavorable, area- 

to- volume ratio. 

The result is that a relatively high surface (free) energy creates a nucleation barrier against the 

onset of phase transformation. This barrier may be overcome by agitation or by “seeding” I.e. 

providing a rough surface to kick – start the nucleation of the new phase (for instance: this is the 

reason for adding solid chips to a liquid prior boiling, so as to prevent overheating and 

“bumping” ) Otherwise, nucleation is a purely random (stochastic process). 

 

 

Kinetic Theory of Gases 

The Kinetic theory of gases attempts to explain all of the concepts of classical thermodynamics, 

such as temperature and pressure, in terms of an underlying microscopic theory based on atoms 

and molecules. One of the most fundamental properties of any macroscopic system is the so- 

called equation of state. This is the equation that specifies the exact relation between pressures P, 

volume V, and temperature T for a substance. The equation of state for a gas is very different to 

the equation of state of a liquid. Now, it turns out that most gases obey a simple equation of state 

called the ideal law 

   PV = n RT 

We may also write the equation of state in the form: 

     f (P, V ,T) = 0 

where the function f depends on the particular system. The simplest system is an ideal gas. In 

this case, the equation of state is: 

                                     PV = N K T 

where N = Number of particles, and K is the Boltzmann constant. For Vander Waal‟s gas, the 

equation of state is: 



(    
 

  
)   ̅         

Where a and b are constants 

Note that: 

R = NA K 

 ̅ = 
 

 
 

n = 
 

  
 

Where n is number of moles 

N = number of molecules 

NA = Avogadro‟s number = 6.02 x 10
23 

Mole 
-1  

                                                

The equation of state of a Vander Waal‟s gas reduces to that of an ideal gas for a = b = 0. 

The equation of state can be represented on a graph of pressure Vs. Volume, often called a PV 

diagram.  

 

 

Example1: Derive a formular for the work done by any gas (ideal or not) which expands 

isobarically  

Solution: If P is a constant then, 

 

   ∫    
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Example2: Derive a formular for the work done by a gas when it expands isothermally. 

Solution: The work done by an expanding gas is given by: 

    ∫    
  

  

 

Where    is the final volume,    is the initial volume,  P is the pressure 



But this pressure changes. For an ideal gas we have: 

  
   

 
 

⇒      ∫
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THE MAXWELL DISTRIBUTION 

The Maxwell distribution of velocities describes the thermal motions of distribution of 

classical particles. 

 Consider a one-dimensional (along x-axis say) system of ideal particles of mass m.  The 

distribution function          , is such that                 is the probability of finding a 

particle between x and x+dx with velocity between    and       .  The total probability must 

be equal to unity so we have: 

∫ ∫             
 

  

    

     

                

Where    is the length of the system. 

The Maxwell distribution applies to a thermal distribution, at a temperature T. It is 

stationary (independent of t) and homogeneous (independent of x) with the specific form as: 
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+             

Now, the standard integral: 

∫        
 ⁄

 

  

     
 

 ⁄              

For a particle in 3 - D, equation (1) becomes 

∫                             

with, 



                             in Cartesian coordinate 

                                         in spherical polar coordinates              

Similarly in 3 – D, equation (2) becomes, 
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 ⁄
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+             

 Where V is the volume of the system 

 

A Maxwellian distribution corresponds to a distribution of the form:            where 

  
 

 
    is the K.E of the particle.  This form generalizes a canonical distribution for the state 

with energy   of any system. 

 We are only concerned (at the present) with the case of a classical ideal gas. 

 

Thermodynamics of an Ideal Gas 

The basic properties of an ideal gas can be calculated using the Maxwellian distribution 

function. Two important quantities are the internal energy and the pressure for a given N, V & T. 

 The internal energy of an ideal gas consisting of N particle in a volume V at a 

temperature T may be evaluated as follows:  The energy of each individual particle is   
 

 
   , 

and the total energy is found by summing oven all the particles in the system.  The total energy 

for a statistical distribution is N times the mean energy where, 

Mean energy = < > ∫                          

i.e.,        . 

⇒ Evaluating the mean energy of the particles by averaging over the Maxwellian distribution 

(equation 6) gives 

  
 

 
                 



Which is the internal energy of an ideal gas.  If the gas consists of particles (such as molecules) 

that can rotate or oscillate, then Equation (8) generalizes to   
 

 
    where g is the number of 

degrees of freedom.  The specific form of equation (8) corresponds to     degrees of freedom 

for a structure-less particle with these being its motion in the       directions for example. 

The Equation of State of an Idea Gas 

Another property of an ideal gas is the equation of state.  The pressure may be calculated 

by noting that it is the force per unit area on the surface of the system. 

 Consider a system which is a cube of sides L, so that its volume is     .  Consider the 

force on the surface in the     plane.  Each particle that reflects from the surface has    change 

sign.  This corresponds to am impulse,     .  The problem reduces to a one-dimensional 

problem because the    and    components are unaffected. 

 The number of particles between    and        reflecting from the plane per unit time 

is             .  The force exerted is     

 

 
∫    

 

 

    
                   

Evaluating this for a Maxwellian distribution, and dividing by the area    to get the force 

per unit area gives. 
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Equation (10) is the perfect gas Law. 

The Entropy of an Ideal Gas 

The entropy determines whether or not a change can occur spontaneously: a change can 

occur only if the entropy does not increase.  The thermodynamics of an ideal gas can be 



determined given the equation of state.       , and the assumption that    is independent of 

temperature.  In particular, one may then derive explicit expressions for the entropy and for all 

the state functions. 

from           , with       and       , we have 

     

  

 
   

  

 
               

⇒ ∫   ∫  
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Where   ,    and    are constants of integration. 

Now, for a monatomic gas,    
 

 
  , 

            (
   ⁄  

  
  ⁄   

)              

Combining all the constants in (13) and (14) into a single constant, and with        
 ⁄  

the entropy can then be written as: 

                     ⁄                 

The Adiabatic Equation of State 

Consider changes at constant entropy, called adiabatic changes.  An adiabatic change is 

reversible. 

For an ideal gas,      in (11) implies that   
  

 
   

  

 
                 

Integrating (16), we find that                                    

Eliminating   using PV    , this relation may be rewritten in the form 

               
     

  
                



Where Г is called the adiabatic index. 

For a monatomic gas, one has      
 ⁄    and hence    

 ⁄  

The Entropy of Mixing 

A simple example of the increase in entropy is when two gases mix. Consider a system at a fixed 

temperature, in which initially there are    particle in a volume    and    particles in a volume 

V2, and that these are allowed to mix so that there N1 + N2 particles  in a volume       .  The 

change in entropy is: 

                                     

    (
       

     

  
    

  
)              

In the particular case when        
 ⁄ ,         

 ⁄ , equation (19) reduces to: 

                       

It follows that the entropy increases in this case and it is not difficult to see that the entropy 

change as a result of mixing is always positive. 

Remark:  we have not said whether the gases are identical or not.  If they are identical then the 

change in entropy must be zero, and yet the calculation seems to suggest that there is a change in 

entropy.  This is referred to as the Gibb‟s Paradox.  There is no simple physical resolution of the 

Gibbs Paradox within the framework of classical statistical mechanics. 

There is a procedure, called correct Boltzmann counting, which makes classical statistical 

mechanics internally consistent.  However, a proper justification of correct Boltzmann counting 

relies on the classical limit of quantum statistical mechanics. 
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