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CHAPTER ONE 
  
1.0 Newtonian Mechanics – Motion of A Particle in One, Two and Three Dimensions 
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1.1 Linear Acceleration 
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Newtonian Mechanics hinge on the three laws of Newton’s: 
 
1. Every particle continues in a state of rest or of uniform motion in a straight line 
    unless acted upon by a force. 
 
2. If F is the (external) force acting on a particle of mass m which as a consequence is 
    moving with velocity v, then 
 

  
dt
dPmv

dt
dF   where P = mv is the momentum. 

 

If m is independent of time t, we have 
dt
dvmF  , F = ma where a is the 

acceleration of the particle. 
 
3. If particle A acts on particle B with a force ABF in a direction along the line joining 

the particles, while particle B acts on particle A with a force BAF , then ABBA FF  . 
In other words, to every action there is an equal and opposite reaction.  
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Example 
 Due to a force field, a particle of mass 5 units moves along a space curve 
whose position vector is given as a function of time t by 
 
     ktjttittr 2243 12832   
 
Find (a) the velocity, (b) the momentum, (c) the acceleration and (d) the force field at 
any time t 
 
Solution 
 

(a) Velocity  
dt
drv     

   
      tkjttitv 2421216 32   
 
(b) Momentum  P = mv 
    

P = 5v 
    
       tkjttitP 2421216 32   
 
       tkjttitP 1201060530 32   
 

(c) Acceleration  
2

2

dt
rd

dt
dva   

 
     kjttia 2423612 2   
 

(d) Force   
dt
dvm

dt
dPF   

 
     kjttiF 1201018060 2   
 
 
1.2 Work 
 

If a force F acting on a particle gives it a displacement dr, then the work done by 
the force on the particle is defined as  drFdW .  

 
The total work done W in moving the particle from point A to point B along a 

curve C is given by  

     
2

1

...
r

rC

B

A

drFdrFdrFW  

 
r1 and r2 are position vectors of A and B respectively. 
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1.3 Power 
 

This is the time rate of doing work on a particle. Let P represent Power and W 
represent Work. 

 

   
dt

dWP   

 
If F is the force acting on a particle and v is the velocity of the particle, then we 
have  vFP .   
 

1.4 Kinetic Energy 
 

If a particle has a constant mass and at times t1 and t2 it is located at A and B and 

it moves with velocities 
dt
drv 1

1   and 
dt
drv 2

2   respectively. Then the total work done 

in moving the particle along C from A to B is given by 

    
2

1

2

1

...
r

r

r

rC

dr
dt
dvmdrFdrFW  

 

 2
1

2
22

1 vvmW   

 

Let  2

2
1 mvT  , the kinetic energy of the system. Then, the total work done from 

A to B along curve C equals 
 
W = kinetic energy at B – kinetic energy at A 
 
W = T2 –T1 
 

2
11 2

1 mvT  , 2
22 2

1 mvT   

 
Example 

 
Find the work done in moving an object along a vector r = 3i + 2j – 5k if the 

applied force is F = 2i – j – k. 
 
Solution 
 
Work done  W = F.dr 
    
   W = (2i – j – k).(3i + 2j – 5k) 
   W = 6 – 2 + 5 
Work done  W = 9J 
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CHAPTER TWO 
 
2.0 Conservative Forces 
 A force is conservative if its dependence on the position vector r of the particle 
is such that the work W can always be expressed as the difference between the 
quantity Vp(r) at the initial point and its value at the final point. 
 Let us suppose that there exists a scalar function V such that VF  . Then 
the following can be proved. 
 
Theorem 1: The total work done in moving the particle along C from P1 to P2 is  
 

     21

2

1

. PVPVdrFW
P

P

   

 
The work done is independent of the path C joining points P1 and P2. 
 
 If the work done by a force field in moving a particle from one point to 
another point is independent of the path joining the points then the force field is said 
to conservative. 
 
Theorem 2: A force field F is conservative if and only if there exists a continuously 
differentiable scalar field V such that  VF   or equivalently, if and only if 
 
 0 CurlFF  identically. 
 
Theorem 3: A continuously differentiable force field F is conservative if and only if 
for any closed non-intersecting curve C (simple closed curve) 
 
    0.drF  
 
that is, the total work done in moving a particle around any closed path is zero. 
 
2.1 Potential Energy or Potential 
 
  VF    
 
V is called the potential energy, it is also called the scalar potential or potential. 
Then, total work done from P1 to P2 along C = Potential energy at P1 – Potential 
energy at P2 
 
 W = V1 – V2 
 
 W = V(P1) – V(P2) 
 

 V can be expressed as 
r

ro

drFV .  
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2.2 Conservation of Energy 
 
 For a conservative field,  T2 – T1 = V1 – V2 
      
     T1 + V1 = T2 + V2 
 

 But  2
11 2

1 mvT   and  2
22 2

1 mvT   

 

So,  2
2
21

2
1 2

1
2
1 VmvVmv       * 

 
E = T + V = Total energy. This is the sum of the kinetic energy and potential energy. 
From equation *, the total energy at P1 is the same as the total energy at P2. Hence, 
 
  T + V = constant = E 
 
Theorem: In a conservative force field the total energy (that is, sum of kinetic energy 
and potential energy) is a constant. This is the principle of conservation of energy. 
 
2.3 Impulse 

 
2

1

.
t

t

dtFI  

This is also equal to change in momentum 
 

  1212

2

1

. PPmvmvdtFI
t

t

    

 
2.4 Torque and Angular Momentum 
 The torque of a particle with position vector r which moves in a force field F is 
define as  
  FrT   
 
The torque of a particle is the moment of the force F about reference point say O. The 
magnitude of T is a measure of the ‘turning effect’ produced on the particle by the 
force. We obtain the angular momentum from the torque. 
 

       mvrvrmvrm
dt
dFr    

   LPr   
 
  PrL   This is the angular momentum or moment of momentum 
about a reference point O. 
 

  
dt
dLT   
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 The torque acting on a particle equals the time rate of change in its angular 
momentum. 
 
2.5 Conservation of Momentum 
 

 Newton’s Second Law  mv
dt
dF   

 

 Let F = 0,   0mv
dt
d  

 
   mv = constant 
 
 If the net external force acting on a particle is zero, its momentum will remain 
unchanged. This is the principle of conservation of momentum. 
 
2.51 Conservation of Angular Momentum 
 
 If the net external torque acting on a particle is zero, the angular momentum 
will remain unchanged. 
 

   0 vrm
dt
d

dt
dLT  

 
   vrm constant 
 
Example 
 Show that the force field F defined by 
 
    kzxzxyjxyzixzzyF 2223232 6326   is a conservative force field. 
 
Solution 
 
 The force field F is conservative if and only if curl F = 0 F  
 
 
     i   j    k  
 

 F  
x
   

y
    

z
  

 
      232 6xzzy          32xyz   zxzxy 222 63   
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 F        02212312366 33222222  yzyzkxzzyxzzyjxyzxyzi  

 
 F 0. Hence, the force field is conservative. 

 
2.6 Central Forces Problems 
 A force whose direction always passes through a fixed point is called a central 
force. Let us suppose that a force acting on a particle of mass m such that (a) it is 
always directed from m toward or away from a fixed point O. (b) its magnitude 
depends only on the distance r from O. Then we call such a force a central force or 
central force field with O as the center of force. Symbolically, F is a central force if 

and only if    
r

rfrrfF r
 1  where 

r
r r
1 is a unit vector in the direction of r. 

 The central force is one of attraction toward O or repulsion from O according 
as f(r) < 0 or f(r) > 0 respectively. 
 
Examples 
 Scattering of a particle by a central repulsive inverse square force. Consider a 
particle subject to a repulsive force inversely proportional to the square of the distance 
from the moving particle to a fixed point or centre of force. [This problem is 
applicable in atomic and nuclear Physics]. When a proton, accelerated by a machine 
such as a cyclotron passes near a nucleus of the target material, the proton is deflected 
or scattered under the action of such a force due to the electric repulsion of the 
nucleus. 
 
2.61 Important Properties of Central Force Fields 
  

If a particle moves in a central force field, then 
 

1. The path or orbit of the particle must be a plane curve i.e. the particle moves in 
a plane (x-y plane). 

2. The angular momentum of the particle is conserved, that is, is constant. 
3. The particle moves in such a way that the position vector or radius vector 

drawn from O to the particle sweeps out equal areas in equal times. In other 
words, the time rate of change in area is constant. 

 
2.62 Equations of Motion for a Particle in a Central field 
 We know that the motion of a particle in a central force field takes place in a 
plane. If we choose this plane as the x-y plane and the coordinates of the particle as 
polar coordinates (r,θ), the equation of motion are found to be 
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dots denote differentiations with respect to time t. 
 
2.63 Potential Energy of A Particle in A central Field 
 
     drrfrV   
 
 This is the potential energy of a particle in the central force field. We obtain 
the additive constant by assuming 0V at r = 0 or 0V  as .r  
 
 
2.64 Conservation of Energy 
 Using the last equation and the fact that in polar coordinates the kinetic energy 

of a particle is 
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rrm  , the equation for conservation of energy can be 

written   ErVrrm
oo
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  Edrrfrrm
oo
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1   E is the total energy and is constant. 
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CHAPTER THREE 
 
3.0 Oscillations 
 
3.1 Periodic Motion 
 This is any type of motion that keeps on repeating itself after a certain interval 
of time T known as the period of the motion. For example, the motion of planets 
around the sun, the motion of an oscillating pendulum. 
 
3.11 Simple Harmonic Motion 
 This is an example of periodic motion. It is defined as the motion of a body in 
a straight line whose acceleration is directed to a fixed point and is directly 
proportional (in magnitude) to the distance of the body from the point. 
 

   
cxa

cxa

xa







  

 
c is a constant. The acceleration is pointing in the opposite direction of the motion. 
 

  cx
dt

xda 
2

2

 motion along x – axis 

 

  02
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From Hooke’s law, the equation of motion of the body in differential from will be  
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This can be written as 02
2

2

 x
dt

xd
 , ,2

m
k

   is known as the angular frequency 

of the motion. f 2 , f is the frequency of the motion. 
 
 The solution of the last equation gives us the instantaneous displacement of 
the body from the equilibrium. The solution is  
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   tBtACostx  sin  
 
      taCostx , where a and  are constant. 
 
3.12 Instantaneous Velocity and Acceleration of Simple Harmonic Motion 
 
      taCostx  
 

        tSina
dt

tdxtv   

 
 if ,0  aCosx   
 

  
a
xCos   

 

  

2

2

2

1

1

a
xSin

CosSin
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 minus indicates that the direction of velocity is always opposing the motion.  
 
At extreme ends, v = 0 because x = a, v = vmax at x = 0, av    
 

 

   

  xta

tCosa
dt
dvta

2

2









 

 
 The acceleration is also opposing the motion. a = amax at x = a 
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3.13 Energy of A Simple Harmonic Motion (or Oscillator) 
 In a S.H.M. there are no dissipative forces, hence, the total energy is equal to 
the mechanical energy of the system, that is, the sum of potential energy and the 
kinetic energy. 
 
  E = T + V 
 

  2

2
1 mvT    and 2

2
1 kxV   

 
 

  22

2
1

2
1 kxmvE   

 
3.2 Damped Oscillations 
 A physical system undergoing SHM is an ideal case since in theory the 
oscillations will continue forever with constant amplitude, frequency and phase angle. 
What we normally experience in real life are oscillations whose amplitudes die out 
gradually to zero. The reason is that there are external resistant forces on the motion 
of such bodies. Hence, there are energy losses. This type of oscillation taking place in 
the absence of an external periodic force aid, the oscillation is known as damped  
oscillation. The nature of the damping depends on the manner in which the damping 
agent resists the oscillating body. We shall consider a simple case where the damping 
is proportional in magnitude to only the first power of the velocity. That is, 
 

 
dt
dxFD   for oscillation along the x – axis. 

 

 
dt
dxkFD

'  

 
Examples 
 
1. When a mass attached to an elastic spring is vibrating inside a viscous liquid. 
 
2. When a simple (or compound) pendulum is oscillating in a windy environment. 
 
 For such oscillations in the x – direction the equation of motion in differential 
form becomes 
 

 
dt
dxkkx

dt
xdM '
2

2

   where 'k  is known as the coefficient of damping. 
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The behaviour of the system (that is, the nature of vibration) depends on the term 
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3.21 Under Damped Motion 
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The motion is said to be under damped. The solution is of the form 
 

  
tittit
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3.22 Critically Damped Motion 
 
 Here ∆ = 0.  
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The system is said to be critically damped under this condition. The solution should 
be of the form 
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  where P and Q are constants whose values depend on 
the initial conditions. Here, there are no vibrations, the mass only returns to the 
equilibrium position after it has been displaced and released.  
 
3.23 Over Damped Motion 
 

  This occurs when ∆ > 0, that is, 2
2

4



   

m
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m
k
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Here, the solution is 
 

  
tttt

Setx
2

2
2

2

4242Re








  
 
R and S are arbitrary constants. No vibration here as well, the mass returns to the 
equilibrium position after being displaced and released, but it does so more slowly 
than in a critically damped case. 
 
3.3 Forced Vibrations or Oscillations 
 Forced vibrations takes place when a system capable of vibrating is subjected 
to an external force which is itself periodic. In this case, the behaviour of the system 
depends on the nature of the external periodic force applied. 
 Let’s consider the case where a mechanical system is undergoing vibrations in 
a resisting medium and is also subjected to an external force which is varying simple 
harmonically as .CosbtFF o   
 The equation of motion here, for vibration along the x – axis is  
 

 CosbtFkx
dt
dxk

dt
xdm o '
2

2

 

 
 This is second order Linear Differential Equation and it is Non – homogenous. 
It has a general solution of the form 
 
 PCG XXX   Method of undetermined coefficient where XC is the 
complementary solution, XP is particular solution and XG is the general solution. 
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CHAPTER FOUR 

 
4.0 Collision of Particles, Moving Frames of Reference and Elementary Mechanics of 
      Rigid Bodies 
 
4.1Collision of Particles 
 Two or more particles may collide with each other during the course of their 
motions. Problems which consider the motions of such particles are called collision or 
impact problems. 
 In practice we think of colliding objects such as spheres, as having elasticity. 
The time during which such objects are in contact is composed of a compression time 
during which slight deformation may take place, and restitution time during which the 
shape is restored. We assume that the spheres are smooth so that forces exerted are 
along the common normal to the spheres through the point of contact (and passing 
through their centers). 
 A collision can be direct or oblique. In a direct collision the direction of 
motion of both spheres is along the common normal at the point of contact both 
before and after collision. A collision which is not direct is called oblique. 
 
4.11 Newton’s Collision Rule 
 If  12v   and '

12v  are the relative velocities of the spheres along the common 
normal before and after impact. Then 12

'
12 vv  . The quantity  , is the coefficient of 

restitution and it depends on the materials of which the objects are made and is 
generally taken as a constant between 0 and 1. If    = 0 the collision is called 
perfectly inelastic or briefly inelastic. If    = 1 the collision is called perfectly elastic 
or briefly elastic. In this case, the total kinetic energy before and after impact is the 
same. 
 
Example 
 Two masses  m1 and m2 travelling in a straight line collide. Find the velocities 
of the particles after collision in terms of the velocities before collision. 
 
Solution 
 Let the velocities of the particles before and after collisions be 21 , vv  and 

'
2

'
1 , vv  respectively. By Newton’s Collision Rule  12

'
2

'
1 vvvv     1 

 
By the principle of conservation of momentum,  
 
total momentum after collision = total momentum before collision 
 
 2211

'
22

'
11 vmvmvmvm        2 

 
Solving equations 1 and 2 simultaneously 
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4.2 Moving Frames of Reference 
 
 The coordinates systems used to describe the motions of particles by Newton 
were assumed to be inertial frame of reference, that is, they are fixed in space, that is, 
is absolutely at rest. In practice, this assumption will cause to hold, for example, a 
coordinate system fixed in the earth is not an inertial system since the earth itself is 
rotating in space. Consequently, if we use this coordinate system to describe the  
motion of a particle relative to the earth we obtain results which may be in error.  
Therefore, it is better to consider the motion of particles relative to moving coordinate 
system. This moving coordinate system is referred to as non-inertial frame of  
reference. 
 
4.21 Rotating Coordinate 
 If XYZ denote an inertial coordinate system with origin O which is considered  
fixed in space. Let the coordinate system xyz  having the same origin O be rotating  
with respect to the XYZ system. Let us consider vector A which is changing with time.  
To an observer fixed relative to the xyz system the time rate of change of  

kAjAiAA 321   is found to be  
  

  k
t

dA
j

dt
dAi

dt
dA

dt
dA

M

321     1 

 
where subscript M indicates the derivative in the moving (xyz) system. However, the  
time rate of change of A relative to the fixed XYZ system symbolized by the subscript  
F is found to be  
 

  A
dt
dA

dt
dA

MF

      2 

 
 is called the angular velocity of the xyz system with respect to the XYZ system. 
 
 Let DF and DM represent time derivative operators in the fixed and moving 
systems. Then we can write operator equivalence 
 
   MF DD       3 
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4.22 Velocity in A Moving System 
 
 If, in particular, vector A is the position vector r of a particle, then equation 2 
gives 
 

   r
dt
dr

dt
dr

MF

       4 

 
   rrDrD MF       5 
  
or  

 rD
dt
drv F

FF
P   = velocity of particle P relative to fixed system 

 

 rD
dt
drv M

MM
P   = velocity of particle P relative to moving system 

 
 rv

F
M   = velocity of moving system relative to fixed system. 

 
 Then, equations 4 and 5 can be written as 
 
 

F
M

M
P

F
P vvv         6 

 
4.23 Acceleration in A Moving System 
 

 If 
F

F dt
dD 2

2
2   and  

M
M dt

dD 2

2
2   are second derivative operators with respect  

to t in the fixed and moving systems, then application of equation 3 yields 
 
    rrDrDrDrD MMMF   222  7 
 
 
4.24 Coriolis and Centripetal Acceleration 
 
 The last two terms on the right of equation 7 are called the Coriolis  
acceleration and Centripetal acceleration respectively. 
 
 Coriolis acceleration = rDM2  
 
    = Mv2  
 
 Cenripetal acceleration =  r   
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Example  
 An xyz coordinate system is rotating with respect to an XYZ coordinate  
system having the same origin and assumed to be fixed in space. The angular velocity  
of the xyz system relative to the XYZ system is given by   ktjtti 422 2    
where t is time. The position vector of a particle at time t as observed in the xyz  
system is given by    kttjitr 32 461  .  Find (a) the apparent velocity and  
(b) the true velocity at time t = 1. 
 
Solution 
 

(a) The apparent velocity at any time t is ktjti
dt
dr 21262   

 

At time t = 1, this is kji
dt
dr 1262   

 
(b) The true velocity at any time t is  

 
 

       kttjitktjttiktjtir
dt
dr 3222 4614221262   

 
At time t = 1, this is  
 
  

kji 1262    +   
2
2
i

 
6
1



j

 
4
6
k

= 34i – 2j + 2k 

       
 
4.3 Elementary Mechanics of Rigid Bodies 
 
4.3.1 What is A Rigid Body? 
 This is a system of particles in which the distance between any two particles 
does not change regardless of the forces acting on it. 
 
4.3.2 Translations and Rotation 
 A displacement of a rigid body is a change from one position to another. If 
during a displacement all points of the body on some line remain fixed, the 
displacement is called a Rotation about the line. If during a displacement all points of 
the rigid move in lines parallel to each other the displacement is called a Translation.  
 
4.3.3 Euler’s Theorem 
 A rotation of a rigid body about a fixed point of the body is equivalent to a 
rotation about a line which passes through the point. The line referred to is called the 
instantaneous axis of rotation. 
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4.3.4 Chasle’s Theorem 
 The general motion of a rigid body can be considered as a translation plus a 
rotation about a suitable point which is often taken to be the center of mass. 
 
4.3.5 Plane Motion of A Rigid Body 
 The motion of a rigid body is simplified considerably when all points move 
parallel to a given fixed plane. In such case two types of motion, called plane motion 
are possible. 
 
4.3.5.1 Rotation About A Fixed Axis 
 In this case the rigid body rotates about a fixed axis perpendicular to the fixed 
plane. The system has only one degree of freedom and thus only one coordinate is 
required for describing the motion. 
 
4.3.5.2 General Plane Motion 

In this case, the motion can be considered as a translation parallel to the given  
fixed plane plus a rotation about a suitable axis perpendicular to the plane. This axis is 
often chosen so as to pass through the center of mass. The number of degrees of 
freedom for such motion is three (3): two coordinates being used to describe the 
translation and one to describe the rotation. The axis referred to is the instantaneous 
axis and the point where the instantaneous axis intersects the fixed plane is called the 
instantaneous center of rotation. 
 
4.3.6 Moments of Inertia  
 The moment of inertia of a particle of mass m about a line or axis say AB is 
defined as I = mr2 , where r is the distance from the mass to the line. The moment of 
inertia of a system of particles, with masses m1, m2, ……mN about the line or axis AB 
is defined as  
 

  22
22

2
11

1

2 ....... NN

N

v
vv rmrmrmrmI 



 

 
r1, r2, ….. rN are their respective distances from AB. 
 
 The moment of inertia of a continuous distribution of mass, such as the solid 
rigid body R is given by 
 
  

R

dmrI 2  

 
r is the distance of the element of mass dm from AB. 
 
4.3.7 Radius of Gyration 
 

 If 



N

v
vv rmI

1

2  is the moment of inertia of a system of particles about AB and  

 

 



N

v
vmM

1

is the total mass of the system. 
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 Then, the quantity K such that  
 
 

 





v
v

v
vv

m

rm

M
IK

2

2  

 
is called the radius of gyration of the system about AB. 
 
For continuous mass distribution, we have 
 

 





R

R

dm

dmr

M
IK

2

2   

 
 
4.3.8 Theorems 
 
4.3.8.1 Parallel Axis Theorem 
 Let I be the moment of inertia of a system about axis AB and let IC be the 
moment of inertia of the system about an axis parallel to AB and passing through the 
center of mass of the system. Then if b is the distance between the axes and M is the 
total mass of the system, we have 
 
 2MbII C   
 
4.3.8.2 Perpendicular Axis Theorem 
 Consider a mass distribution in the x-y plane of an xyz coordinate system. Let 
Ix, Iy and Iz denote the moments of inertia about the x, y and z axes respectively. Then, 
  

Iz = Ix + Iy 
        


