COURSE CODE: STS 443
COURSE TITLE: SAMPLING TECHNIQUES II

NUMBER OF UNIT: 3 UNITS
COURSE DURATION: THREE HOURS PER WEEK.
COURSE COORDINATOR: DR GODWIN NWANZU AMAHIA B.Sc, M.Sc, ph.D (go.amahia@mail.ui.edu.ng)

LECTURER OFFICE LOCATION: HOD'S STATISTICS OFFICE

CDURSE CDNTENT:

Difference and regression estimation procedures, Cluster sampling with unequal sizes, Multi - stage and multi - phase sampling, Double sampling, Interpenetrating scheme. Problems of optimal allocation with more than one item. Sources of error in survey.

CDURSE REQUIRDMENTS:

This is a compulsory course for all statistics students. Students are expected to have a minimum of 75% attendance to be able to write the final examination.

READING UIST:

1.) Williams G.C Sampling techniques, 3rd edition. John Willey and Sons. New Yolk, 1977.
2.) Des R. Sampling theory. Tata Mc Graw - Hill, 1968.
3.) Okafor F.C. Sampling survey theory with applications. Afro - Qrbis pub, Nsukka 2002.
4.) Kish L. Survey sampling. New york, John Willey, 1965.
5.) Chaudhuri A. and S. Hort. Survey Sampling Theory and Methods. Marcel Dekker, New york, 1992.
6.) Murthy, M.N. Sampling Theory and Methods. Statistical Publication Society. Calcutta, 1967.

LECTURE NDTES

LECTURE ONE

USE OF AUXILIARY INFORMATION IN SRS SCHEME

Let us assume that a srs of size n is to be drawn form a finite pop containing N elements. How can we estimate a pop mean μ, a total T_{Y}, or a ratio R , utilizing sample information on y and an auxiliary variable X ?
a. Estimation of the pop ratio R,

$$
\hat{R}=\mathrm{r}=\sum_{1}^{n} y i / \sum_{1}^{n} x i=\frac{y}{\bar{x}}
$$

b. Estimation of the pop mean $\mu=\hat{R} \bar{x}=\hat{R} \mu_{\mathrm{x}}$
c. Estimation of the pop total $\mathrm{T}_{\mathrm{y}}=\hat{R} \mathrm{~N} \bar{X}=\mathrm{N} \hat{R} \mu_{\mathrm{x}}=\hat{R} \mathrm{X}$

Ratio Estimator of the population total \hat{T}_{y}

$$
\begin{align*}
& \hat{T}_{y}=\frac{\bar{y}}{\bar{x}} X, \quad X=\sum_{i=1}^{N} x_{i} \quad \ldots \ldots \ldots . \tag{2.9}\\
& \hat{v}\left(\hat{T}_{y}\right)=X^{2} \hat{V}\left(\frac{\bar{y}}{\bar{x}}\right)=N^{2-} \bar{X}^{2} \hat{V}\left(\frac{\bar{y}}{\bar{x}}\right) \ldots \ldots \ldots . \tag{2.10}\\
&=X^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{N^{2} x}\right) \sum_{i=1}^{n} \frac{\left(y_{i}-r x_{i}\right)^{2}}{(n-1)} \ldots \ldots \ldots \tag{2.11}
\end{align*}
$$

Where μ_{x} is the population mean for the random variable X .
Example 2: In a study to estimate the total sugar content of a trade load of oranges, random sample of $\mu=10$ oranges was juiced and weighed. The total weight of all the oranges, obtained by first weighing the trade loaded and then unloaded, was found to be 1800pd. Estimate Ty, the total sugar content for the oranges and the standard error of your estimate.

Range	1	2	3	4	5	6	7	8	9	10	
Sugar content: Y	.021	.031	.025	.022	.033	.027	.019	.021	.023	.025	$\sum y_{i}=0.246$
Weight of Orange: X	.40	.48	.43	.42	.50	.46	.39	.41	.42	.44	$\sum x_{i}=4.35$

Note: N and μ_{x} are
Use \bar{x} in place of μ_{x} and assume an estimator of T_{y} given by (N-n)/ $\mu=1$

$$
\begin{gathered}
\hat{T}_{y}=\frac{\sum_{i=1}^{10} y i}{\sum_{i=1}^{10} x i}(T x)=\frac{0.246}{4.35}(1800)=101.79 p d . \\
\begin{aligned}
\sum_{i=1}^{10} y^{2} i=0.006224, \quad \sum_{i-1}^{10} x^{2} i=1.9035, \sum_{i=1}^{10} x i y i=0.10839 \\
\bar{x}=\frac{4.35}{10}=0.435, \frac{\bar{y}}{x}=\frac{0.246}{4.35}=0.05655
\end{aligned} \\
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}=\sum_{i=1}^{n} y_{i}^{r}+r^{2} \sum_{i=1}^{10} x_{i}^{2}-2 r \sum_{i=1}^{10} x_{i} y_{i} \\
&=0.006224+(0.05655)(1.9035)-2(0.05655)(.10839) \\
&=0.000052285 \\
& \hat{V}\left(\hat{T}_{y}\right)=(1800)^{2}\left(\frac{1}{10}\right)\left[\frac{1}{(0.435)^{2}}\right]\left(\frac{0.000052285}{9}\right)=9.94720
\end{aligned}
\end{gathered}
$$

Se $\left(\hat{T}_{y}\right)=\sqrt{9.94720}$

$$
=3.1539
$$

Ratio estimator of a population mean μ_{Y}

$$
\begin{equation*}
\hat{\mu}_{y}=\frac{\sum_{i=1}^{n} y i}{\sum_{i=1}^{n} x_{i}}\left(\mu_{\mathrm{x}}\right) \quad=\mathrm{r} \mu_{\mathrm{x}} \tag{2,12}
\end{equation*}
$$

$$
\begin{align*}
\hat{V}\left(\hat{\mu}_{y}\right) & =\mu_{x}^{2} \hat{V}(r)=\mu_{x}^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{\mu_{x}^{2}}\right) \sum_{1=i}^{n} \frac{\left(y_{i}-r x_{i}\right)^{2}}{(n-1)} \\
& =\left(\frac{N-n}{n N}\right) \sum_{i=1}^{n} \frac{\left(y_{i}-r x_{i}\right)^{2}}{(n-1)} \tag{2.13}
\end{align*}
$$

Example 3: A company wishes to estimate the average amount of money μ_{y} paid to employees for medical express during the first three months of the current year. Average quarterly reports are available in the fiscal reports of the previous year. A random sample of 100 employee records is taken from the population of 1000 employees. The sample results are summarized below. Estimate the average amount of money μ_{y}.
$\mathrm{n}=100, \mathrm{~N}=1000$
Total for the current quarter $=\sum_{i=1}^{100} y_{i}=1750$
Total for the corresponding quarter of the previous year $=\sum_{i=1}^{100} x_{i}=1200$
Population total for the corresponding quarter of the previous year $=T_{x}=12,500$
$\sum_{1}^{n} y_{i}^{2}=31,650, \sum_{1}^{n} x_{i}^{2}=15,620, \sum_{1}^{n} x_{i} y_{i}=22,059.35$
The estimate of μ_{x} is

$$
\hat{\mu}_{y}=\mathrm{r} \mu_{\mathrm{x}}
$$

Where $\mu_{\mathrm{x}}=\frac{T_{x}}{N}=\frac{12,500}{1000}=12.50$
Then $\hat{\mu}_{y}=\frac{\sum_{1}^{n} y_{i}}{\sum_{1}^{n} x_{i}}\left(\mu_{x}\right)=\frac{1750}{1200}(12.50)=18.23$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}\right. & \left.-r x_{i}\right)^{2}=\sum_{1}^{100} y_{i}^{2}+\mathrm{r}^{2} \sum_{1}^{100} x_{i}^{2}-2 \mathrm{r} \sum_{1}^{100} x_{i} y_{i} \\
& =31,650+(1.4583)^{2}(15,620)-(2.9166)(22,059.35) \\
& =441.68
\end{aligned}
$$

$$
\begin{aligned}
\hat{V}\left(\hat{\mu}_{Y}\right) & =\left(\frac{N-u}{n N}\right) \sum_{i=1}^{n} \frac{\left(y_{i}-r x_{i}\right)^{2}}{(n-1)} \\
& =\frac{1000-100}{100(1000)}\left(\frac{441.68}{99}\right) \\
& =0.0401527
\end{aligned}
$$

Se $\left(\hat{m}_{y}\right)=\sqrt{0.0401527}$

$$
\approx 0.20
$$

LECTURE TWO

REGRESSION ESTIMATION

We observed that the ratio estimator is appropriate when the relationship between Y and X is linear through the origin. If there is evidence of a linear relationship between the observed Y's and X's, but not necessarily one that would pass through the origin, then this extra information provided by the auxiliary variable x may be taken into account through a regression estimator of the mean μ_{y}. One must still have a knowledge of μ_{x}, before the estimator can be employed. The underlying line that shows the relationship between the Y 's and X 's is referred to as the regression line of Y on X .

Regression estimator of a population mean μ_{y}

$$
\begin{equation*}
\hat{\mu}_{Y} L=\bar{y}+b\left(\mu_{x}-\bar{x}\right) \tag{2.14}
\end{equation*}
$$

Where b $=\sum_{i=1}^{n} \frac{(y i-\bar{y})(x i-\bar{x})}{\sum_{i=1}^{n}(x i-\bar{x})^{2}}=\sum_{i=1}^{n} \frac{x i y i-n \overline{x y}}{\sum_{i=1}^{n} x_{i}{ }^{2}-n \bar{x}^{2}}$
Estimated variance of $\hat{\mu} y L$ is
$\hat{V}(\hat{\mu} y L) \quad=\quad\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-2}\right)\left[\sum_{i=1}^{n}(y i-\bar{y})^{2}-b^{2} \sum_{i=1}^{n}(x i-\bar{x})^{2}\right]$

Example 4: A mathematics achievement test was given to 486 students prior to their entering a certain college. From these students a simple random sample of $n=10$ students was selected and their progress in calculus observed. Final calculus grades were then reported, as given in the table below. It is known that $\mu_{x}=52$ for all 486 students taking the achievement test. Estimate μ_{Y} for this population.

Student	1	2	3	4	5	6	7	8	9	10
Achievement T.S.X	39	43	21	64	57	47	28	75	34	52

Final calculusla. Y	65	78	52	82	92	89	73	98	56	75

$$
\begin{aligned}
& \bar{y}=76, \bar{x}=46 \\
& \mathrm{~b}=\frac{\sum_{1}^{n} x i y i-m \overline{x y}}{\sum x^{2} i-n \bar{x}^{2}} \quad=\quad \frac{36854=10(46)(76)}{23,634-10(46)^{2}} \\
& =0.766 \\
& \sum_{i=1}^{n}(y i-\bar{y})^{2}=2056 ; \quad \sum_{i=1}^{n}(x i-\bar{x})^{2}=2474 \\
& \hat{\mu}_{Y} L=\bar{y}-\quad b\left(\mu_{x}-\bar{x}\right)=76+(0.766)(52-46)=80 \\
& \hat{V}\left(\hat{\mu}_{Y} L\right)=\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-2}\right)\left[\sum_{i=1}^{n}(y i-\bar{y})^{2}-b^{2} \sum_{1}^{n}(x i-\bar{x})^{2}\right] \\
& =\frac{486-10}{486(10)}\left(\frac{1}{8}\right)\left[2056-(0.766)^{2}(2474)\right] \\
& \hat{V}(\hat{\mu} y L)=7.397 \\
& \operatorname{Se}(\hat{\mu y} \mathrm{~L}) \quad=\quad 2.71774 \\
& \cong \quad 2.7
\end{aligned}
$$

LECTURE THREE

Difference Estimation

The difference method of estimating a population mean or total is similar to the regression method in that it adjusts the estimation of the parameter under consideration (seq) \bar{y} value up or down by an amount depending on the difference $(\mu x-\bar{x})$. However, the regression coefficient b is not computed. In effect, b to is set equal to unity. The function $(\mu x-\bar{x})$ is called a zero function, its expected value is identically equal to zero.

Difference estimator of a Population Mean μ_{y}

$$
\begin{equation*}
\hat{\mu}_{y D}=\bar{y}+(\mu x-\bar{x})=(\mu x+\bar{d}) \tag{2.15}
\end{equation*}
$$

Where $\bar{d}=(\bar{y}-\bar{x})$
Estimated variance of $\hat{\mu}_{y D}$ is

$$
\begin{equation*}
\hat{V}\left(\hat{\mu}_{y D}\right) \quad=\quad\left(\frac{N-n}{n N}\right) \frac{\sum_{i=1}^{n}(d i-\bar{d})^{2}}{(n-1)} \tag{2.16}
\end{equation*}
$$

Example 5:

Suppose a population contains 180 inventory items with a stated book value of $¥ 13,320.0$. Let xi denote the book value and yi the audit value of the ith items. A simple random sample of $n=10$ items yields the results in the table below. Estimate the mean audit value of μ_{y} by the difference method and estimate the variance of $\hat{\mu}_{y D}$.

Sample	Audit value, yi	Book value, xi	Di
1	9	10	-1
2	14	12	+2
3	7	8	-1
4	29	26	+3

5	45	47	-2
6	109	112	-3
7	40	36	+4
8	238	240	-2
9	60	59	+1
10	170	167	+3

$$
\bar{y} \quad=\quad 72.1, \quad \bar{x}=71.7, \quad \mu x=74.0
$$

$$
\hat{\mu}_{y D}=\mu x+\bar{d}=74.0+(72.1-71.7)=74.4
$$

Also $\left(\frac{1}{n y}\right) \sum_{i=1}^{10}(d i-\bar{d})^{2}=\left(\frac{1}{n-1}\right)\left(\sum_{i=1}^{10}\left(d^{2} i-n \bar{d}^{2}\right)\right.$

$$
=\quad \frac{58-10(0.4) 2}{9}=6.27
$$

Thus

$$
\begin{aligned}
\hat{V}\left(\hat{\mu}_{y D}\right) & =\left(\frac{N-n}{n N}\right) \sum_{i=1}^{10} \frac{(d i-\bar{d})^{2}}{(n-1)} \\
= & {\left[\frac{180-10}{(10)(180)}\right](6.27) } \\
& =0.59 \\
\operatorname{Se}\left(\hat{\mu}_{y D}\right) & =0.768
\end{aligned}
$$

LECTURE FOUR

Two Stage Cluster Sampling

Introduction

The procedure of first selecting clusters and then choosing a specified number of elements from each selected cluster is known as sub-sampling. It is also called two-stage sampling. The clusters that form the units of sampling at the first stage are called the first stage units or primary sampling units (PSU). The elements or groups of elements within clusters which form the units of sampling at the second stage are called sub-units or second -stage units (SSU).

TWO-STAGE SAMPLING, EQUAL FIRST-STAGE UNITS: Estimation of the

 Population Mean and TotalWe shall assume that the target population has NM_{i} elements grouped into N firststage units, each containing M_{i} second-stage units.

Let:
$\mathrm{N} \quad=\quad$ the number of the clusters in the population
$\mathrm{n} \quad=\quad$ the number of clusters selected in a simple random sample.
$\mathrm{Mi}=$ the number of elements in cluster i .
$\mathrm{m}_{\mathrm{i}} \quad=\quad$ the number of elements in a simple random sample from cluster i.
$\mathrm{M}=\quad \sum_{I=I}^{N} M_{i}=$ the number of elements in the population
$\overline{\mathrm{M}} \quad=\quad \frac{M}{N}=$ the average cluster size for the population
$\mathrm{y}_{\mathrm{ij}} \quad=\quad$ the $\mathrm{j}^{\text {th }}$ observation in the sample from the ith cluster.
$\bar{y}_{i}=\frac{1}{m_{i}} \sum_{j=1}^{m i} y_{i j}=$ the sample mean for the ith cluster.
An unbiased estimator of the population mean is given by
$\hat{\mu}=\left(\frac{N}{M}\right) \frac{\sum_{i=1}^{n} M_{i} \bar{y}_{i}}{n}$
The estimate variance of $\hat{\mu}$ is
$\hat{V}(\hat{\mu})=\left(\frac{N-n}{N}\right)\left(\frac{1}{n \bar{M}^{2}}\right) S_{b}{ }^{2}+\left(\frac{1}{n N \bar{M}^{2}}\right) \sum_{i=1}^{n} M_{i}{ }^{2}\left(\frac{M_{i}-M_{i}}{M_{i}}\right) \frac{S_{w i}{ }^{2}}{m_{i}}$
Where
$\mathrm{S}_{\mathrm{b}}{ }^{2}=\frac{1}{(n-1)} \sum_{i-1}^{n}\left(M_{i} \bar{y}_{i}-\bar{M} \hat{\mu}\right)^{2}$
And
$\mathrm{S}_{\text {wi }}^{2}=\quad \frac{1}{(m i-1)} \sum_{j-1}^{m i}\left(y_{i j}-\bar{y}_{i}\right)^{2}, \quad \mathrm{i}=1,2, \ldots, \mathrm{n}$
The ratio estimator of the population mean is
$\hat{\mu}_{r}=\frac{\sum_{i=1}^{n} M_{i} \bar{y}_{i}}{\sum_{i=1}^{n} M_{i}}$
Estimated variance of $\hat{\mu}_{r}$ is

$$
\begin{equation*}
\hat{V}\left(\hat{\mu}_{r}\right)=\left(\frac{N-n}{n N}\right)\left(\frac{1}{\bar{M}^{2}}\right) S_{b}^{2}+\left(\frac{1}{n N \bar{M}^{2}}\right) \sum_{i=1}^{n} M_{i}^{2}\left(\frac{M_{i}-M_{i}}{M_{i}}\right) \frac{S_{w i}{ }^{2}}{m_{i}} \tag{1.6}
\end{equation*}
$$

Where
$\mathrm{S}_{\mathrm{b}}{ }^{2}=\sum_{i=1}^{n} \frac{M_{i}{ }^{2}(\bar{y} i-\hat{\mu} r)^{2}}{(n-1)}$
And
$\mathrm{S}_{\mathrm{wi}}{ }^{2}=\sum_{j=1}^{m i} \frac{\left(y i_{j}-\bar{y}_{i}\right)^{2}}{\left(m_{i}-1\right)}, \quad \mathrm{i}=1,2, \ldots, \mathrm{n}$
An estimator of the population total in given by

$$
\begin{equation*}
\hat{Y} \quad=\quad M \hat{\mu}=\left(\frac{N}{n}\right) \sum_{i=1}^{n} M_{i} \bar{y}_{i} \tag{1.9}
\end{equation*}
$$

The estimated variance is

$$
\begin{align*}
\hat{V}(\hat{Y}) & =M^{2} \hat{V}(\hat{Y}) \\
& =\left(\frac{N-n}{N}\right)\left(\frac{N^{2}}{n}\right) S^{2}{ }_{b}+\frac{N}{n} \sum_{i=1}^{n} M_{i}^{2}\left(\frac{M_{i}-M_{i}}{M_{i}}\right) \frac{S^{2}{ }_{w i}}{m_{i}} \tag{1.10}
\end{align*}
$$

Where $\mathrm{S}_{\mathrm{b}}{ }^{2}$ and $\mathrm{S}_{\mathrm{wi}}{ }^{2}$ are given by equations (1.7) and (1.8) respectively.

Example 1:

A nursery man wants to estimate the average height (in inches) of 1200 seedlings in a field that is sub-divided into 50 plots that vary in size. A two-stage cluster sample design produced the following data.

Plot	Number of seedlings $\mathbf{M}_{\mathbf{i}}$	Number of seedlings sampled $\mathbf{m}_{\mathbf{i}}$	Height of seedlings $\mathbf{y}_{\mathbf{i j}}$
1	63	6	$5,2,4,3,1,5$
2	57	8	$4,2,7,2,7,2$
3.	30	3	$3,2,5$
4.	23	2	4,4,
Total	173	17	

(i) Estimate the average height of seedlings in the field and the standard error of the estimate
(ii) Construct a 95 per cent confidence interval on the population mean

Solution

Plot	Number of seedlings $\mathbf{M}_{\mathbf{i}}$	Number of seedlings sampled $\mathbf{m}_{\mathbf{i}}$	$M_{i} \bar{y}_{i}$	$\mathbf{S}_{\mathbf{w i}}{ }^{\mathbf{2}}$	$\mathbf{M}_{i}{ }^{2}\left(\frac{1}{m_{i}}-\frac{1}{M_{i}}\right) S^{2}{ }_{\mathrm{w} i}$
1	63		210.00	2.67	$1,706.575$
2	57		228.00	6.00	$2,907.00$
3.	30		100.00	2.34	631.80
4.	23		62.00	0.00	-
Total	173		-	$5,245.375$	

(i) The average height of seedlings in the field is given by

$$
\hat{\bar{Y}}=\left(\left(\frac{N}{M}\right) \sum_{i-1}^{n} \frac{M_{i} \bar{y}_{i}}{n}\right.
$$

$$
\begin{aligned}
& =\quad\left(\frac{50}{1200}\right)\left(\frac{630}{4}\right)=6.5625 \\
& \hat{=} \quad 6.6
\end{aligned}
$$

The estimated variable of $\hat{\bar{Y}}$ is given by

$$
\begin{aligned}
\hat{V}(\hat{\bar{Y}}) & =\left(\frac{N-n}{N}\right)\left(\frac{S_{b}{ }^{2}}{n \bar{M}^{2}}\right)+\left(\frac{1}{n N \bar{M}^{2}}\right) \sum_{i-1}^{n} M_{i}^{2}\left(\frac{M_{i}-m_{i}}{M_{i}}\right) \frac{S_{w i}{ }^{2}}{m_{i}} \\
& =2.0395+0.045532769 \\
& \hat{=} \quad 2.09
\end{aligned}
$$

The standard error is given by
$\operatorname{Se}(\hat{\bar{Y}}) \quad \hat{=} \quad 1.4$
(ii) A 95\% confidence interval is given by
$\hat{\bar{Y}} \pm 1.96 \sqrt{\hat{V}(\hat{\bar{Y}})}$
Or $\quad 6.5625 \pm 2.744$
i.e. $\quad 6.56 \pm 2.74$

Thus the average height is estimated to be 6.56 inches. The error of estimation should be less than 2.74 inches with a probability of approximately 0.95 .

Estimation of a population proportion

Consider the problem of estimating a population proportion P such as the proportion of unemployed in a Local Government Area in a State at a particular time. An estimate of P can be obtained by using $\hat{\mu}$, given in equation (1.1) or $\hat{\mu}_{r}$ in (1.5) and letting y_{ij}, $=1$ or 0 depending on whether or not the $\mathrm{j}^{\text {th }}$ element in the ith cluster falls into the category of interest. In many problems of practical application, M is usually unknown. Let $\hat{p} i$ denote the proportion of sampled elements from cluster i that fall into the category of interest.

An estimator of the population proportion p is given by
$\hat{p}=\frac{\sum_{i=1}^{n} M i \hat{p}_{i}}{\sum_{i=1}^{n} M_{i}} \ldots \ldots$ (1.11)

The estimated variance of \hat{p} is
$\hat{V}(\hat{p})=\left(\frac{N-n}{N}\right)\left(\frac{1}{n \bar{M}^{2}}\right) S_{p}{ }^{2}+\left(\frac{1}{n N \bar{M}^{2}}\right) \sum_{i-1}^{n} M_{i}{ }^{2}\left(\frac{M_{i}=m_{i}}{M_{i}}\right)\left(\frac{\hat{p}_{i} \hat{r} i}{m_{i}-1}\right)$
Where $\mathrm{S}_{\mathrm{p}}{ }^{2}=\left(\frac{1}{n-1}\right) \sum_{i-1}^{n} M_{i}{ }^{2}\left(\hat{p}_{i}-\hat{p}^{2}\right)^{2}$
And $\hat{q} i \quad=\quad\left(1-p_{i}\right)$

Example 2:

In an urban household survey, a Local Government Area (LGA) consists of 26 Enumeration Areas (EAs) from which a random sample of 4 EAs was selected. Within each selected EA, a probability sample of one in five households was selected. Information on households headed by women was collected as shown below.
(i) Calculate the proportion of households headed by woman and its standard error.
(ii) What is the social significance of the result in (i)?

Solution

$\begin{aligned} & \text { EA } \\ & \text { NO } \end{aligned}$	Househol d H/H		H/H Heade d by woma n	\hat{p}_{i}	$M_{i} \hat{p}_{i}$	$M_{i}^{2}\left(\hat{p}_{i}-\hat{p}\right)^{2}$	$\left(M_{i} \hat{p}_{i}-\frac{i}{n} \sum_{1}^{n} M_{i} \hat{p}_{i}\right)^{2}$	$M_{i}^{2}\left(\frac{1}{m_{i}}-\frac{1}{M_{i}}\right) \frac{\hat{p}_{i} \hat{q}_{i}}{m_{i}-1}$
	M_{i}	m_{i}						
1	70	14	5	$\begin{array}{\|l\|} \hline 0.3 \\ 57 \end{array}$	$\begin{aligned} & 24.9 \\ & 9 \end{aligned}$	48.3164	1.3514	69.216
2	104	21	5	$\begin{array}{\|l\|} \hline 0.2 \\ 38 \end{array}$	$\begin{array}{\|l\|} \hline 24.7 \\ 52 \\ \hline \end{array}$	4.1976	1.9614	78.2559
3	116	23	8	$\begin{aligned} & 0.3 \\ & 48 \end{aligned}$	$\begin{array}{\|l\|} \hline 40.3 \\ 68 \end{array}$	109.7214	202.0804	111.2954
4	116	24	3	0.1	14.5	236.9506	135.7808	50.7298

				25	0			
Total	406	-	-		104. 61	399.186	341.174	309.4971

(i) The estimate of the proportion headed by women is

$$
\begin{aligned}
\hat{p} & =\quad \sum_{i=1}^{n} M_{i} \hat{p}_{i} / \sum_{i=1}^{n} M i \\
& =\quad(104.61) / 406 \\
& =0.2577 \\
& \hat{=} \quad 25.8 \%
\end{aligned}
$$

$$
\hat{V}(\hat{p})=\left(\frac{N-n}{N}\right)\left(\frac{1}{n \bar{M}^{2}}\right) S^{2} p+\left(\frac{1}{n N \bar{M}^{2}}\right) \sum_{i=1}^{n} M^{2} i\left(\frac{M i-m i}{M i}\right)\left(\frac{\hat{p} i \hat{q} i}{m i-1}\right)
$$

$$
=0.003021
$$

$\operatorname{Se}(\hat{p}) \hat{=} 5.5 \%$
(ii) $\hat{p} \quad=\quad 25.8 \%$ provides a useful measure of women autonomy and parity with men.

LECTURE FIVE

DOUBLE SAMPLING: \bar{X} not known

The classical regression type estimator of \bar{Y} assumes knowledge of the population mean \bar{X}. However, \bar{X} is often unknown. Assume a large random sample of size n_{1} drawn to estimate \bar{X}, while a subsample of size n is drawn from n_{1} to observe the characteristics Y under study.
Since \bar{x}^{\prime} based on n_{1} units is an unbiased estimate of \bar{X}, a regression type estimator appropriate to this situation is
$\bar{y}_{d}=\bar{y}+\beta(\bar{x}-\bar{x}) \ldots \ldots .(1.1)$
Clearly, \bar{y}_{d} is a biased estimate of \bar{Y}
$E\left(\bar{y}_{d}\right)=E_{1} E_{2}\left(\bar{y}_{d}\right)$. \qquad
Where the subscripts 1 , 2 denote varieties on the first and second phases of sampling $E_{2}\left(\bar{y}_{d}\right)=\bar{y}^{s}+\beta\left(\bar{x}^{s}-\bar{x}^{c}\right)$
$=\bar{y}^{\prime}$ (replacing $\hat{\beta}$ by β).
$E_{1}\left(\bar{\xi}_{d}\right)=\bar{Y} \ldots \ldots .(1.4)$
$V\left(\bar{y}_{d}\right)=V_{1} E_{2}\left(\bar{y}_{d}\right)+E_{1} V_{2}\left(\bar{y}_{2}\right)$.
$V_{1} E_{2}\left(y_{d}\right)=V\left(5^{\prime}\right)-\left(\frac{1}{n_{1}}-\frac{1}{V}\right) S_{y}{ }^{2} \ldots \ldots(1.6)$
Now, $y_{6}-\frac{1}{n} \sum_{i}^{m} y_{t}-\frac{A}{n} \sum_{i}^{m} x_{i}+\sum_{i}^{4} x_{6}$
$-\frac{1}{n} \sum_{11}^{n}\left(y_{t}-\beta x_{n}\right)$

Further, regard the large sample as a finite population
$E_{1} V_{2}\left(\bar{y}_{\sigma}\right)=E_{1} V_{2}\left(\frac{1}{n} \sum_{1}^{n} f_{t}\right)$
$-E_{1}^{n}\left(\frac{1}{n}-\frac{1}{N_{2}}\right) g^{2} \mu^{2} \ldots \ldots(1.7)$
$\left(\frac{1}{n}-\frac{1}{v_{1}}\right) s_{v}^{2}\left(1-p^{2}\right) \ldots \ldots(1.8)$
Since $\bar{S}^{2} \mu^{t}$ is an unbiased estimate of $\Sigma_{\mu}{ }^{2}=\Sigma_{\gamma}{ }^{2}\left(1-p^{2}\right)$
Substituting (1.6) and (1.8) in (1.5), we have
$V\left(\bar{y}_{d}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) S_{y}{ }^{2}+\left(\frac{1}{n}-\frac{1}{n^{t}}\right) S_{y}{ }^{2}\left(1-p^{2}\right)$.
$=\frac{1}{n} S_{y}{ }^{2}\left(1-p^{2}\right)+\frac{1}{n_{d}} p^{2} S_{y}{ }^{2}-\frac{1}{N_{i}} S_{y}{ }^{2} \ldots \ldots \ldots \ldots$. \qquad

Although this result is useful, its usefulness will be greatly increased if the cost of observing both X and Y is also taken into consideration. We should choose that strategy which for a fixed cost \bar{C}_{0} we can estimate $\overline{\boldsymbol{Y}}$ with maximum precision. If c_{1} and c_{2} are the unit cost of observing Y and X respectively, the total cost of the survey apart from overhead costs may be expressed as
$C=c_{1} n+c_{2} n_{1} \ldots \ldots \ldots .(1.11)$
Define the Langragian function:
$E^{\prime}\left(n_{1} n_{1} \lambda\right)=\frac{1}{n} g_{y}{ }^{2}\left(1-q^{2}\right)+\frac{1}{n_{1}} \beta^{2} g_{y}{ }^{2}-\frac{1}{N} g_{y}{ }^{2}+\lambda\left(c_{1} n+s_{2} n_{1}-c\right) \ldots \ldots$.
$\frac{d \bar{f}}{d i n}=0 \Rightarrow n=\left\{S_{y}^{2}\left(1-p^{2}\right)\right\}^{1 / 2} / \sqrt{g_{1} \lambda} \ldots \ldots . .(1.13)$
$\frac{\omega}{d v_{1}}=0 \Rightarrow N_{1}=\left(p^{2} \xi_{y}\right)^{2 / 2} / \sqrt{c_{2} \lambda} \ldots \ldots .(1.13)$
$\frac{m}{n_{1}}=\left[\frac{\left(1-q^{2}\right)}{p^{2}} \frac{g_{2}}{q_{2}}\right]^{1 / 2}$
i.e. $n=n_{1}\left[\frac{\left(1-\gamma^{2}\right)}{\gamma^{2}} \frac{g_{8}}{\gamma_{2}}\right]^{1 / 2}$ \qquad
substituting for n in (1.11), we have (noting that $c=c_{1} n+c_{2} n_{1}$)
$c=c_{1} r_{1}\left[\frac{\left(1-v^{2}\right)}{v^{2}} \frac{c_{2}}{c_{1}}\right]^{1 / 2}+\varepsilon_{2} n_{1}$

Substituting . (1.16) and (1.17) in (1.10) we have
$V_{0}\left(y_{\alpha}\right)=\frac{1}{8}\left[\sqrt{c_{1}\left(1-v^{2}\right)}+\sqrt{c_{2} q^{2}}\right]^{2} s_{y}^{2}-\frac{1}{M} g_{y}{ }^{2} \ldots \ldots .(1.18)$
The variance of an estimator in single sampling is $V\left(y_{s}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) s_{y}{ }^{2}$
When the minimum total cost is C , we have from the cost function $n=\frac{q}{\sigma_{4}}$. The optimum variance in single sampling becomes
$V_{0}\left(\bar{y}_{d}\right)=\frac{0_{s}}{v} S_{y}{ }^{2}-\frac{1}{v} S_{y}{ }^{2}$. \qquad
Double sampling will be more efficient than single sampling if
$V_{v}\left(\bar{y}_{\alpha}\right) \leq V_{v}\left(\bar{y}_{s}\right)$ i. e.when
$V_{0}\left(\bar{y}_{s}\right)-V_{0}\left(\bar{y}_{d}\right) \geq 0$. \qquad
Using (1.18) and (1.20) this works out as
$p^{2}\left(c_{1}-c_{2}\right) \geq 2 \sqrt{c_{1} c_{2}\left(1-p^{2}\right)} p^{2}$
$p\left(c_{1}-c_{2}\right) \geq 2 \sqrt{c_{1} c_{2}\left(1-p^{2}\right)}$
$p^{2}\left(c_{1}-c_{2}\right)^{2} \geq 4 c_{1} c_{2}\left(1-p^{2}\right)$
Or alternatively

Extend the results to ratio $y_{d}=\frac{y}{z} \bar{X}^{2}$

LECTURE SIX

CLUSTER SAMPLING

Introduction

The smallest unit in which a survey population can be subdivided is called an element: a collection of elements is called a cluster.

Definition:

A cluster sample is a simple random sample in which each sampling unit is a collection of elements or cluster.
Cluster sampling is less costly than simple or stratified random sampling if the cost of obtaining a sampling frame that lists all population of elements is very high or if the cost of obtaining observations increases as the distance separating the elements increases.
Cluster Sampling
Consider the following notations:
$\mathrm{N}=$ number of clusters in the population
$\mathrm{N}=$ number of clusters selected in a simple random sampling
m_{i} - number of elements in cluster i, $\zeta-\mathbb{1} \ldots N$
$\bar{m}=\frac{1}{n} \sum_{i-1}^{n} m_{t}=$ average cluster size for the sample
$\mathrm{M}=\sum_{i=1}^{W} m_{t}=$ number of elements in the population
$M=\frac{M}{W}=$ average cluster size for the population
$y_{i}=$ total of all observations in the ith cluster
Estimate of population mean is
$y=\sum_{i=1}^{n} y_{i} / \sum_{i=1}^{n} m_{i}$

Estimate of population total

$\hat{P}=M \bar{Y}$
$=M \sum_{i=1}^{n} Y_{t} i \sum_{1}^{n} m_{i} \ldots \ldots$.(1.2)
$V(q)=N^{2}\left(\frac{N-n}{N n}\right) \sum_{i=1}^{n} \frac{(2 n-8 m)^{2}}{(n-1)}$.
Or
$N \bar{y}_{n}=\frac{N}{w} \sum_{t=1}^{n} y_{i} \ldots \ldots$ (1.4)
$V\left(N \overline{y_{n}}\right)=N^{2}\left(\frac{(N-n}{N}\right) \sum_{i=1}^{n} \frac{(n-\gamma)^{2}}{(n-1)}$.
Observe that (1.5) is independent of M .

Estimate of population proportion

Let a_{i} denote the total number of elements in cluster i that possesses the Characteristics of interest
$P=\sum_{i=1}^{m} a_{i} / \sum_{i=1}^{n} m_{i} \ldots \ldots$.(1.6)
$V(\beta)=\left(\frac{N-n}{\omega N_{i}^{2}}\right) \sum_{i=1}^{n} \frac{\left(a_{i}-\hat{B}_{m_{i}} n^{A}\right.}{(N-1)} \ldots .$. (1.7)

Example: A simple random sample of 5 blocks from 40 was selected. The objective was to estimate the number of residents aged 65 and above in the population. The result is shown below.

No of residents $=m_{i}$	No aged 65 and over a_{i}	$\mathrm{F}_{2} m_{i}$	$a_{i}-\hat{F} m_{i}$	$\left(a_{t}-\hat{F}_{m_{t}}\right)^{2}$
90	15	21.60	-6.60	43.560
32	8	7.08	0.32	0.1024
47	14	11.28	2.72	7.3984
25	9	6.00	3.00	9.0000
16	4	3.84	0.16	0.0256
210	50			60.0864

$B=\frac{\Sigma_{1}^{g} a_{t}}{\Sigma_{1}^{8} m_{t}}=\frac{50}{210}=0.24$
$\nabla(\vec{F})=\left(\frac{N-n}{N n M^{2}}\right) \sum_{i=1}^{n} \frac{\left(a_{i}-E m_{i}\right)^{2}}{(m-1)}$
$\overline{40 \times 5 \times 42^{2}}\left(\frac{1}{4}\right)(60.0864)$

