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INTRODUCTION 

Many real-world applications of probability theory have the particular feature that 

data are collected sequentially in time.  A few examples are weather data, stock 

market indices, air pollution data, demographic data and political tracking polls.  

These also have in common that successive observations are typically not 
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independent.  We refer to any such collection of observations as a stochastic 

process. 

DEFINITION 

A stochastic process is a collection of random variables that take values in a set S, 

the state space.    The collection is indexed by another set T, the index set.  The 

two most common index sets are the natural numbers  , and the 

nonnegative real numbers , which usually represent discrete time and 

continuous time, respectively. 

The first index set thus gives a sequence of random variables (rvs)  

and the second, a collection of random variables , one r.v. for each 

time t. 

Remarks: 

In general, the index set does not have to describe time but is also commonly used 

to describe spatial location.The state space can be finite, countably infinite, or 

uncountable, depending on the application. 
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SECTION 2 
CLASSIFICATION OF GENERAL STOCHASTIC PROCESSES 

2.1 INTRODUCTION 
The main elements of distinguishing stochastic processes are in the nature of the 
statespace, the index parameter T, and the dependence relations among the 
random variables Xt. 

2.1.1 State Space S 
This is the space in which the possible values of each Xt lie.  In the case that S 
=(0,1,2,…), we refer to the process as integer valued, or alternatively as a discrete 
state process.  
If S = the real line , then we call Xt a real-valued stochastic process.  If S 
is the Euclidean k spaced then Xt is said to be a k-vector process. 
Remark:  The choice of state space is not uniquely specified by the physical 
situation being described, although usually one particular choice may stand out as 
most appropriate. 

2.1.2 Index Parameter T 
If  then we state that Xtis a discrete time stochastic process.  Often 
when T is discrete we shall write Xn instead of Xt.  If , then Xt is called 
a continuous time process. 

  
2.2 CLASSICAL TYPE OF STOCHASTIC PROCESSES 

We now describe (first briefly) then in detail, some of the classical types of 
stochastic processes characterized by different dependence relationships among 
Xt.  Unless otherwise stated, we take  and assume the random variables 
Xt are real valued. 

2.2.1 Process with Stationary Independent Increments 
If the random variables  are independent for 
all choices of  satisfying , then we say that  is a 
process with independent increments. 
If the index set contains a smallest index , it is also 
assumed  are independent.  If the index set 
is discrete that is T = (0,1,…), then a process with independent increments 
reduces to a sequence of independent random variables 

 in the sense that knowing the individual 
probabilities/distributions of  enables us to determine the joint 
distributions of any finite set of , in fact that of 

 
REMARKS/DEFINITIONS 
1. If the distribution of the increments  depends only on 

the length h of the interval and not on the time t1, the process is said to 
have stationary increments. 

2. For a process with stationary increments, the distribution of 
 is the same as the distribution of , 

no matter the values of  and h. 
3. We now state a theorem. 
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 If a process , where  or  has stationary 
independent increments and has a finite mean, then it is true that: 
(a)  where  and . 
(b)  where 

 and  

4. Both the Brownian motion process and the Poisson process have 
stationary independent increments. 

5. We now prove remark 3(a). 
 Proof of . 

Let  
Then for any t and s, we have 

 
   

  
    using the property of stationary increments. 

The only solution to the functional equation 
.  Differentiating with respect to t and 

independently with respect to s we have .   
Therefore for s = 1, we find .  Integrating 
this elementary differential equation yields .  But 

 implies  and therefore d = 0. 
The expression  is 

 
 as required. 

2.2.2 Markov Processes 
A Markov process is a process with the property that, given the value of Xt, the 
values of Xs, s > t, do not depend on the value of Xu, u < t; that is, the probability 
of any particular future behavior of the process, when the present state is known 
exactly, is not altered by additional knowledge concerning the past behavior 
(provided our knowledge of the present state is precise).   
Definition1: In formal terms, a process is said to be Markov if 

 
where    ……
 (1) 
Definition 2: Let A be an interval of the real line.  The function  
     ……
 (2) 
is called the transition probability function and is basic to the study of the 
structure of Markov processes. 
We may express the condition (1) as follows:  

 
where . 

2.2.3 Martingales 
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Let  be a real-valued stochastic process with discrete or continuous parameter 
set.  We say that  is a Martingale if,  for all t, and if for any 

 for all values of 
. 

2.2.4 Renewal Processes 
A renewal process is a sequence Tk of independent and identically distributed 
(i.i.d.) positive random variables, representing the lifetimes of some “units”.  The 
first unit is placed at time zero; it fails at time T1 and is immediately replaced by a 
new unit which then fails at time T1 + T2 and so on, thus motivating the name 
“renewal process”.  The time of the nth renewal is . 
A renewal counting process  counts the number of renewals in the interval [0,t].  
Formally, , for  
Remark:  The Poisson process with parameter  is a renewal counting process 
for which the unit lifetimes have exponential distribution with common parameter 

. 
2.2.5 Other examples such as Poisson process, birth and death processes and Branching 

Processes will be considered in small details. 
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SECTION 3 

MARKOV CHAINS 
3.1 INTRODUCTION 
 In this section, we consider a stochastic process  that takes on a 

finite or countable number of possible values.  Unless otherwise mentioned, this 
set of possible values of the process will be denoted by the set of nonnegative 
integers .  If , then the process is said to be in state i at time n.  
We suppose that whenever the process is in state i, there is a fixed probability Pij 
that it will next be in state j.  That is we suppose that  

   …… (3.1) 
for all  and all .  Such a stochastic process is known as a 
Markov chain.  
Equation (3.1) may be interpreted as stating that, for a Markov chain, the 
conditional distribution of any future state  given the past states 

 and the present state  is independent of the past states and 
depends only on the present state. 
The value  represents the probability that the processes will, when in state i, 
next make a transition into state j.  Since probabilities are nonnegative and since 
the process must make a transition into some state, we have that  

 
Let P denote the matrix of one-step transition probabilities , so that  

 
Example 3.1: (Forecasting Weather)  
Suppose that the chance of rain tomorrow depends on previous weather 
conditions only through whether or not it is raining today and not on past weather 
conditions.  Suppose also that if it rains today, then it will rain tomorrow with 
probability α; and if it does not rain today, then it will rain tomorrow with 
probability β.  If we say that the process is in state 0 when it rains and state 1 
when it does not rain, then the preceding is a two state Markov chain whose 
transition probabilities are given by 

 
Example 3.2: (A Communications System) 
Consider a communications system which transmits the digits 0 and 1.  Each digit 
transmitted must pass through several stages, at each of which more is a 
probability P that the digit entered will be unchanged when it leaves.  Letting  
denote the digit entering the nth stage, then  is a two-state Markov 
chain having a transition probability matrix 
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Example 3.3: On any given day, Gary is either cheerful (c), so-so (s) or glum (G).  
If he is cheerful today, then he will be c, s, or G tomorrow with respective 
probabilities 0.5, 0.4, 0.1.  If he is feeling so-so today, then he will be c, s or G 
tomorrow with probabilities 0.3, 0.4, 0.3.  If he is glum today, then he will be c, s, 
or G tomorrow with probabilities 0.2, 0.3, 0.5. 
Letting  denote Gary’s mood on the nth day, then  is a three state 
Markov chain (state 0 = c, state 1 = s, state 2 = G) with transition probability 
matrix 

 
Example 3.4: (Transforming a Process into a Markov Chain) 
Suppose that whether or not it rains today depends on previous weather conditions 
through the last two days.  Specifically, suppose that if it has rained for the past 
two days, then it will rain tomorrow with probability 0.7; if it rained today but not 
yesterday, then it will rain tomorrow with probability 0.5; if it rained yesterday 
but not today, then it will rain tomorrow with probability 0.4; if it has not rained 
in the past two days, then it will rain tomorrow with probability 0.2. 
If we let the state at time n depend only on whether or not it is raining at time n, 
then the preceding model is not a Markov chain (why not?).  However, we can 
transform this model into a Markov chain by saying that the state at any time is 
determined by the weather conditions during both that day and the previous day.   
In other words, we can say that the process is in 
state 0, if it rained both today and yesterday, 
state 1, if it rained today but not yesterday, 
state 2, if it rained yesterday but not today, 
state 3, if it did not rain either yesterday or today. 
The preceding would then represent a four-state Markov chain having a transition 
probability matrix 

 
You should carefully check the matrix P, and make sure you understand how it 
was obtained. 

 
BIRTH AND DEATH PROCESSES 

 A continuous-time Markov chain with states 0, 1,… for which  whenever 
 is called a birth and death process.  Thus a birth and death process is a 

continuous-time Markov chain with states 0,1,… for which transitions from state i  can 
only go to either state i – 1 or state i + 1.  The state of the process is usually thought of as 
representing the size of some population, and when the state increases by 1, we say that a 
birth occurs and when it decreases by 1, we say that a death occurs. 
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 Let  and  be given by  
 
 

The values  and  are called respectively one birth rates and one 
death rates.  Since , we see that 

 

 
Hence, we can think of a birth and death process by supposing that whenever there are i 
people in the system, the time until the next birth is exponential with rate  and is 
independent of the time until the next death, which is exponential with  rate . 
EXAMPLE: 
Two Birth and Death Processes 
(i) The M/M/S Queue: Suppose that customers arrive at an s-server service station 

in accordance with a Poisson process having rate .  That is, the time between 
successive arrivals are independent exponential random variables having mean 

.  Each customer, upon arrival, goes directly into service if any of the servers 
are free, and if not, then the customer joins the queue (i.e. he waits in line).  When 
a server finishes serving a customer, the customer leaves the system and the next 
customer in line, if there are any waiting, enters the service. 

 The successive service times are assumed to be independent exponential random 
variable having mean .  If we let X(t) denote the number in the system at time 
t, then  is a birth and death process with 

 
 

(ii) A Linear Growth Model with Immigration. 
 A model in which   

 
 

 is called a linear growth process with immigration.  Such processes occur 
naturally in the study of biological reproduction and population growth.  Each 
individual in the population is assumed to give birth at an exponential rate ; in 
addition, there is an exponential rate of increase E of the population due to an 
external source such as immigration.  Hence, the total birth rate where there are n 
persons in the system is .  Death are assumed to occur at an exponential 
rate  for each member of the population, and hence . 

 A birth and death process is said to be a pure birth process if  for all n (that 
is, if death is impossible).  The simplest example of a pure birth process is the 
Poisson process, which has a constant birth rate  . 

  A second example of a pure birth process results from a population in which each 
member acts independently and gives birth at an exponential rate   If we 
suppose that no one ever dies, then, if X(t)represents the population size at time t, 

 is a pure birth process with . 
 This pure birth process is called a Yule process. 
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Further Remarks about Birth and Death Process 
1. We have seen that a Multiserver Exponential Queueing System is an example of 

birth and death process. 
 Description: 
 Consider an exponential queueing system in which there are s servers available, 

each serving at rate .  An entering customer first waits in line and then goes to 
the first free server.  This is a birth and death process with parameters 

 
 

 To see why this is true, we reason as follows: 
 If there are n customers in the system, where , then n servers will be busy.  

Since each of these servers works at rate , the total departure rate will be .  On 
the other hand, if there are n customers in the system, where , then all s of 
the servers will be busy, and thus the total departure rate will be .  This is 
known as an M/M/S queueing model. 

2. For the birth and death process having parameters  

 
 where  denotes the time, starting from state i, it takes or the process to enter 

state . 
 

CONTINUOUS TIME MARKOV CHAINS 
DEFINITIONS AND PROPERTIES 
 Consider a continuous-time stochastic process  taking on values in 
the set of nonnegative integers.  In analogy with the definition of a discrete-time Markov 
chain, given earlier, we say that the process  is a continuous-time Markov 
chain if for all  and nonnegative integers , 

 
 

 In other words, a continuous-time Markov chain is a stochastic process having the 
Markovian property that the conditional distribution of the future states at time t + s, 
given the present state at t and all past states depends only on the present state and is 
independent of the past.  If, in addition  is independent of s, 
then the continuous-time Markov chain is said to have stationary or homogenous 
transition probabilities.  All Markov chains we consider will be assumed to have 
stationary transition probabilities. 
 Suppose that a continuous-time Markov chain enters state i at some time, say time 
0, and suppose that the process does not leave state i (that is, a transition does not occur) 
during the next s time units.  What is the probability that the process will not leave state i 
during the following t time units? 
 To answer this, note that as the process is in state i at time s, it follows, by the 
Markovian property, that the probability it remains in that state during the interval [s, s + 
t] is just the (unconditional) probability that it stays in state i for at least t time units.  That 
is, if we let denote the amount of time that the process stays in state i before making a 
transition into a different state, then 
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for all .  Hence, the random variable  is memoryless and must thus be 
exponentially distributed. 
 The above gives us a way of constructing a continuous-time Markov chain.  
Namely, it is a stochastic process having the properties that each time it enters state i: 
(i) the amount of time it spends in that state before making a transition into a 

different state is exponentially distributed with rate say ; and 
(ii) when the process leaves state i, it will next enter state j with some probability, call 

it , when . 
A state i for which  is called an instantaneous state since when entered it is 
instantaneously left.  Whereas such states are theoretically possible, we shall 
assume throughout that  for all i.  (If , then state i is called 
absorbing since once entered it is never left). 

DEFINITION: 
Hence, for our purposes, a continuous-time Markov chain is a stochastic process that 
moves from state to state in accordance with a (discrete-time) Markov chain, but is such 
that the amount of time it spends in each state, before proceeding to the next state is 
exponentially distributed.  In addition, the amount of time the process spends in state i, 
and the next state visited, must be independent random variables.  For if the next state 
visited were dependent on , then information as to how long the process has already 
been in state i would be relevant to the prediction of the next state – and this would 
contradict the Markovian assumption. 
A continuous-time Markov chain is said to be regular if, with probability 1, the n umber 
of transitions in any finite length of time is finite.  An example of a non-regular Markov 
chain is the one having 

 
It can be shown that this Markov chain – which always goes from state i to i + 1, 
spending an exponentially distributed amount of time with mean  in state i – will, 
with positive probability, make an infinite number of transitions in any time interval of 
length, t, t> 0.  We shall assume from now on that all Markov chains considered are 
regular. 
Let  be defined by 

 
since  is the rate at which the process leaves state i and  is the probability that it then 
goes to j, it follows that  is the rate when in state i that the process makes a transition 
into state j; and in fact we call  the transition rate from i to j. 
Let us denote by  the probability that a Markov chain, presently in state i, will be in 
state j after an additional time. 

 
Definitions: 
(1)  is the transition rate from i  to j 
 where  
(2)  is the rate at which the process leaves i.  
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SECTION 4 
CHAPMAN-KOLMOGOROV EQUATIONS 

The n-Step Transition Probabilities  
 By definition, the n-step transition probabilities  is the probability that a 
process in state i will be in state j after n additional transitions. 
(*) That is,  
The Chapman-Kolmogorov Equations 
 The C-K equations provide a method for computing these n-step transition 
probabilities.  These equations are given by: 
(**)  

 
REMARKS 
1.  denotes the one-step transition probabilities   
2.  from (*). 
3. Observe that   represents the probability that starting in i the process will go 

to state j in n + m transitions through a path which takes it into k at the nth 
transition. 

Proof of C-K Equations 
 Using remark (3) above, we now sum over all intermediate states k yields the 
probability that the process will be in state j after n + m transitions.  We have: 
  

 

 
  

 
 
 
 
Matrix of n-step transition Probabilities:  
 Let  denote the matrix of n-step transition probabilities  then the C-K 
Equation given by (**) asserts that  
In particular,  
By induction, 

 
That is, the n-step transition matrix may be obtained by multiplying the matrix P by itself 
n times. 
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SOME NOTES ON MARKOV CHAIN 
(1) Irreducible Property: We say that the Markov chain is irreducible if there is 

only one class – i.e. if all states communicate with each other. 
 
CHAPMAN-KOLMOGOROV EQUATIONS AND CLASSIFICATION OF 

STATES 
 The nth-step transition probabilities  is the probability that a process in state i 
will be in state j after n additional transitions, that is, 

 
Of course, .  The Chapman-Kolmogorov equations provide a method for 
computing these n-step transition probabilities.  These equations are: 

 
and are established by observing that 
  
  

 
  

 
  

 
If we let  denote the matrix of n-step transition probabilities , then Equation (1) 
asserts that  
where the dot represents matrix multiplication.  Hence  

 
and thus  may be calculated by multiplying the matrix P by itself n times. 
Illustrative Examples 
 Consider Example 2.1 in which the weather is considered as a two-state Markov 
chain.  If α = 0.7 and β = 0.4, then calculate the probability that it will rain four days from 
today given that it is raining today. 
Solution: The one-step transition probability matrix is given by  

Hence,  

   

 
  



http://www.unaab.edu.ng 
 

Hence the required probability  equals 0.5749 
Example 2: Consider Example 2.4.  Given that it rained on Monday and Tuesday, what 
is the probability that it will rain on Thursday? 
Solution: The two-step transition matrix is given by  

 

 
Since rain on Thursday is equivalent to the process being in either state 0 or state 1 on 
Thursday, the required probability is given by  . 
 

 
 
 

STOCHASTIC PROCESS   STS 461 
CLASSIFICATION OF STATES 

Introduction  
 In order to analyze precisely the asymptotic behavior of the Markov chain 
process, we need to introduce some principles of classifying states of a Markov chain. 

Properties to be classified include: Accessible, Communicate, Aperiodic, 
Recurrent, Transient and Irreducible.  Definitions of these properties now follow: 
 State j is said to be Accessible from state i if for some .  Two states 
i  and j accessible to each other are said to Communicate, and we write . 
Proposition 4.2.1 
Communication is an equivalence relation.  That is: 
(i) ; 
(ii) if , then ; 
(iii) if , and , then . 
Proof: The 1st two parts follow trivially from the definition of communication.  To prove 
(iii) suppose that , and , then there exists m, n such that .  
Hence,  

 
Similarly, we may show there exists an s for which .  Two states that 
communicate are said to be in the same class, and by proposition 4.2.1, any two classes 
are either disjoint or identical.  We say that the Markov chain is Irreducible if there is 
only one class – that is, if all states communicate with each other. 
 State i is said to have period d if , whenever n is not divisible by d and d is 
the greatest integer with this property.  (If  for all n> 0, then define the period of i 
to be infinite).  A state with period 1 is said to be Aperiodic.  Let d(i) denote the period 
of i, we can show that periodicity is a class property. 
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Recurrent (or Persistent): A state  is said to be recurrent if  where 
 is the number of steps it takes for the chain to finally visit i.  

Transient: A state  is said to be transient if  where  is the number 
of steps it takes for the chain to finally visit i.  
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RANDOM WALK 

Description 
 A one-dimensional (simple) random walk is a Markov chain whose state space is 
a finite or infinite subset  of the integers, in which the particle, if it is in 
state i, can in a single transition either stay in i or move to one of the adjacent states 

. 
Transition Matrix of a Random Walk 

If the state space is taken as the nonnegative integers, the transition matrix of a 
random walk has the form 

 
where  and  
 . 
Specifically, if  then, for , 

 
 

REMARKS: 
1. We have a symmetric random walk (which is a Markov chain) if 
   

That is, in each time unit the symmetric random walk is likely to take a unit step 
either to the left or to the right. 

2. A Markov chain whose state space is given by the integers  is 
said to be a random walk, if for some number  

   
SOME EXAMPLES 
1. The designation random walk seems apt since a realization of the process 

describes the path of a person (suitably intoxicated) moving randomly one step 
forward or backward. 

2. Gambler’s Ruin 
 The fortune of a player engaged in a series of contests is often depicted by a 

random walk process.  Specifically, suppose an individual (player A) with fortune 
k plays a game against an infinitely rich adversary and has probability of 
winning one unit and probability  of losing one unit in each 
contest (the choice of the contest at each stage may depend on his fortune), and 

.  The process , where  represents his fortune after n contests, is a 
random walk.  Note that once the state 0 is reached (i.e. player A is wiped out), 
the process remains in that state.  This process is also commonly known as the 
“gambler’s ruin”. 

 REMARKS 
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(i) The random walk corresponding to  for all  
and  with p>q describes the situation of identical contests with a 
finite advantage to player A in each individual trial. 

(ii) It can be proved that with probability , where  represent his 
fortune at time 0, player A is ultimately ruined (his entire fortune is lost), 
while with probability , his fortune increases, in the long run 
without limit. 

3. Consider a particle which is initially at point x = 0 on the x-axis.  At each 
subsequent time unit, it moves a unit distance to the right with probability p or a 
unit distance to the left with probability q where p + q = 1.  At time n, let the 
position of a particle be .  This is an example of random walk. 

4. A simple random walk can be described as a Markov chain  that is such that 

 
 where  are i.i.d. such that . 
 This Markov chain (simple random walk) is irreducible, so it has to be either 

transient, null recurrent or positive recurrent and this will depend on p. 
The n-step Transition Probabilities 
We use the following proposition: 
State i  is  

transient if   
  

 
recurrent if 

 
Consider any state i and note that  since we cannot make it back 
to a state in an odd number of steps.  To make it back in 2n steps, we must take n steps up 
and n steps down, which has probability 

 
      

      

where we have used Stirling’s formula which says . 
 
EXPECTED VALUE AND VARIANCE OF A RANDOM WALK 
Let us consider the random walk .  We want to show that: 
  
and   . 
We make use of the following lemma: 
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Let  be a fixed positive integer and  be independent and identically 
distributed jump variables in a random walk  such that  
        
 (1) 
Consider the above as a random walk, we can write equation (1) as 

 
        
 (2) 
in general, where  are i.i.d. rvs. 
From Equation (2) we obtain 
  
  

 
 

 

 
         

 (3) 

 
         

 (4) 
But . 

  
 

  
  
  
Hence  
and  . 
 
MORE DEFINITIONS 
1. Brownian Motion: (Definition) 
 A stochastic process  is said to be a Brownian motion process if  

(i)  
(ii)  has stationary and independent increments 
(iii) For every t> 0, X(t) is normally distributed with mean 0 and variance . 

Remarks: 
(a) Wiener process is another name for Brownian process. 
(b) Definition 2:Standard Brownian Motion: 
 When , the process is called standard Brownian motion. 
(c) A Martingale process is a standard Brownian motion. 
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Definition 3: Symmetric Random Walk 
A symmetric random walk is a Markov chain with  

 
That is, in each time unit, the symmetric random walk is likely to take a unit step either to 
the left or to the right. 
Definition 3A: A Markov chain whose state space is given by the integers  is 
said to be a random walk, if, for some number 0 <p< 1, 

 
 
 
Remark 
A Markov chain having transition probabilities  

 
 

States 0 and Nare called ABSORBING states since once entered they are never left. 
 
A GAMBLING MODEL 
 Consider a gambler who, at each play of the game, either wins N1 with 
probability p or loses N1 with probability 1 – p(= q).  If we suppose that our gambler 
quits playing either when he goes broke or he attains a fortune of NN, then the gambler’s 
fortune is a Markov chain having transition probabilities  

 
 

States 0 and N are called Absorbing states since once entered they are never left. 
Remark 
The above is a finite state random walk with absorbing barriers (states 0 and N). 
Further Remarks on Random Walk 
(1)  
(2)  
  

 

 

 
   

      (1) 
where the last equality uses the combinatorial identity 
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Now,  

 
  

 

 
From (1), we see that  which shows that , and thus all states are 
recurrent (or persistent). 
 

6  Queueing Processes 
6.1 INTRODUCTION 

A Queueing Process: Is a process in which customers arrive at some designated 
place where a service of some kind is being rendered.  It is assumed that the time 
between arrivals, or inter-arrival time, and the time that is spent in providing 
service for a given customer are governed by probabilistic laws. 
It is assumed in this system/model that customers upon arrival are made to wait 
queue until it is their turn to be served.  Once served they are generally assumed 
to leave the system. 
In this system, we will be interested in determining, among other things, such 
quantities as the average number of customers in the system (or in the queue) and 
the average time a customer spent in the system (or spent waiting in the queue). 

 
6.2 TYPES OF QUEUEING SYSTEM 

We will consider queueing systems in which all of the defining probability 
distributions are assumed to be exponential.  For instance, the simplest of such 
model is to assume that customers arrive in accordance to a Poisson process and 
(thus the inter-arrival times are exponentially distributed) and are served one at a 
time by a single server who takes an exponentially distributed length of time for 
each service.  These exponential queue models are special examples of 
continuous-time Markov chain. Specifically, we describe the following queueing 
models. 

6.2.1 The Queueing System M/M/1: In this system, the first M refers to the fact that 
the inter-arrival process is Markovian (since it is a Poisson process) and the 
second M refers to the fact that the service distribution is exponential (and, hence, 
Markovian).  The 1 refers to the fact that there is a single server. 
Theory: Suppose that customers arrive at a single-server service station in 
accordance with a Poisson process having rate .  That is, the times between 
successive arrivals are i.i.d. exponential random variables having mean .  
Service times are i.i.d. exponential with rate  and independent of the arrivals 
(note that  does not denote the mean here; the mean service time is ).  If the 
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server is busy, incoming customers will wait in line and as soon as a service is 
completed, the next begins.   
If we let X(t) denote the number in the system at time t then  is a 
birth and death process with   

  
  
6.2.2 The Queueing System M/M/S: This is a multiserver exponential queueing 

system.  Consider an exponential queueing system in which there are S servers 
available, each serving at rate .  An entering customer first waits in line and then 
goes to the first free server.  This is a birth and death process with parameters 

  

  
6.2.3 The Queueing System M/D/1: This is an example of a non-Markovian queueing 

system.  In this system, the service times are deterministic.  Also, both interarrival 
times and service times have some general distribution D. 

6.2.4 The Queueing System G/G/1: In this system which is non-Markovian, both 
interarrival times and service times have some general distribution not necessarily 
exponential. 

 
6.3 PROPERTIES OF QUEUEING SYSTEM 

In this section, we consider and illustrate with an example the stationary 
distribution of a queueing system.  When a queueing system has a stationary 
distribution, it is said to be in equilibrium.  Let us illustrate this concept for 
M/M/1 queueing system. 

 Example 
 Consider the M/M/1 queue with  in equilibrium  

What is the expected number of customers in the system? 
What is the expected queue length? 
When a customer arrives, what is the probability that she does not have to wait in 
line? 
When a customer arrives, what is her expected waiting time until service? 
When a customer arrives, what is her expected total time in the system? 

Let us introduce some random variables.  Thus, let 
N = the number of customers in the system 
Q = the queue length 
W = the waiting time until service 
T = the total time spent in the system 
For (a), we know that N has distribution 

 
the geometric distribution including 0 with success probability , and we 
know that  

     which answers (a) 
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 is the traffic intensity 
Equilibrium distribution  is given by  

(b) Note that 
    

and hence  
 

 
which gives 

 
     

 
The answer to (c) is simply  
For (d), note that  if the system is empty and the sum of  i.i.d. 
exponential. With mean  if there are N customers in the system (keep in mind 
that  does not denote the mean but the service rate). 

 
 For (e), let S be a service time and note that  to obtain 
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