UNIVERSITY OF AGRICULTURE ABEOKUTA
 UNIVERSITY EXAMINATIONS
 2009/2010

B.Sc. Degree Examination

MTS 201 (Mathematical Foundations)
2nd July, 2010-2.30 p.m. - 5.30 p.'n.
Instructions: Full marks will be given for complete and legible answers to THREE QUESTIONS.

1(a) (i) Evaluate the following integrals

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x ; \quad \int \frac{d x}{5+13 \cos x}
$$

(ii) Find x in terms of t if $\frac{d x}{d t}=3 t^{2}-6 t+2$ and $x=7$ when $t=0$
(b) The slope of a curve at any point (x, y) is equal to $\sin x$ and the curve passes through the point (0,2). Find its equation.
(ii) Using the method of integration by parts, evaluate the following in ?grals $\int x^{2} e^{a x} d x ; \int e^{x} \sin x d x$

2(a)(i) Find the area contained between the two parabolas $4 y=x^{2}$ and $4 x=y^{2}$
(ii) Find the Arithmetic Progression whose sum and product of its first three terms are 27 and 504 respectively.
b (i) If the first three terms of a Geometric Progression are $1, \sin y$ and $\cos ^{2} y$, find its common ratio.
(ii) The first two terms of a Harmonic Progression are 2 and $\frac{4}{3}$; find the 5 th and the n-th term 3a(i) Find S_{n} if $u_{r}=r^{3} ; u_{r}=r^{2}$ and $u_{r}=r$ respectively and then evaluate $\sum_{1}^{n}\left(2 r^{3}+3 r^{2}-r\right)$
(ii) Yor what values of x is the power series

$$
1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{r}}{r!} \cdots
$$

convergent.
3(b)(i) Write down the equation of the line which makes an angle 150° with the x-axis and an intercept of -3 units on the y-axis.
(ii) Determine the equation of the circle center $(4,-7)$ which touches the line $3 x+4 y-9=0$.

4(a) Find (i) the eccentricity, (ii) the coordinates of the foci (iii) the equations of the directrices of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{81}=1$
4(b)(i) Evaluate the following double integral

4(b)(ii) If the acceleration of a particle is constant and equal to $5 \mathrm{~m} / \mathrm{sec}$ what is its speed? 5(a)(i) Write down the transpose of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 01 & \\
-6 & -11 & -6
\end{array}\right)
$$

(ii) Determine its eigenvalues

5(b) Write down the following system of equations in matrix form sad solve the system:

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=6 \\
& 3 x_{1}+2 x_{2}-x_{3}=14 \\
& 2 x_{1}-x_{2}+3 x_{3}=12
\end{aligned}
$$

Dr. V.F. Payne

