University of Agriculture, Abeokuta, Department of Mathematics
 2009/2010 First Semester Examination July 2010 MTS211 - Abstract Algebra

INSTRUCTION: Answer Question 5 OR 6 and any other three Questions Time: $1 \frac{3}{4}$ hrs

1. (a) Define the following terms
i. A greatest common divisor of integers a and b
ii. A least common multiple of the set $\left\{a_{i}\right\}, i=1,2, \ldots, n$ and $a_{1}, a_{2}, \ldots, a_{n}$ are non zero integers
(b) Prove that if a, b be two non-zero integers, then $d=(a, b)$ exist .Moreover prove that $d=u a+v b$ for some integers u, v.
(c) If d is $g . c . d$ of $(1824,760)$, find the integers u, v such that $d=u a+v b$.
2. (a) i. State the Division algorithm theorem for integers.
ii. State the unique factorization theorem.
(b) Proof that there are infinitely many primes.
(c) Let $S=\{1,2,3,4,5\}$, Let a mapping $f: S \rightarrow S$ be defined as $f(1)=1, f(2)=3$, $f(3)=3, f(4)=4, f(5)=2$. Let g be an injective mapping on S given by $g(1)=4$, $g(3)=3, g(5)=5$.If $g \circ f=f o g$,find the values of $g(2)$ and $g(4)$.
3. (a) i. Define an indexing set
ii. Define a cartesian product or product set
(b) Let
$\Omega=\{a, b, c\}, S_{a}=\{1,2,3,6,8,10\}, S_{b}=\{2,4,6,7,9\}, S_{c}=\{4,11,6,1,3,18\}$. Compute the set sum $S_{a} \vee S_{b} \vee S_{c}$.How many elements are in the set.Compare their number with those in $S_{a} \cup S_{b} \cup S_{c}$.
(c) Using the first principle of mathematical induction,show that 17 divides $\left(3 \times 5^{2 n+1}+\right.$ $2^{3 n+1}$) for any $n \in \mathbf{N}$.
4. (a) i. Define an equivalence relation τ on a set S.
ii. Define an equivalence class and quotient set.
(b) Let $S=\mathbf{Z}, a, b \in S$.Define $a \tau b$ by 5 divides $(a-b)$. Show that τ is an equivalence relation and determine the equivalence class.
(c) Consider $(\mathbf{R}, *, \otimes)$ where $a * b=a b$ and $a \otimes b=a+b+a b$ for all $a, b \in \mathbf{R}$.
i. is $*$ distributive over \otimes
ii. is \otimes distributive over $*$.
5. (a) i. Define a homomorphism of a group
ii. Define an isomorphism and an epimorphism of groups
(b) prove that a homomorphic image of a group is also a group.
(c) Prove that the homomorphism $\phi: G \rightarrow G^{\prime}$ is injective if and only if $\operatorname{ker} \phi$ consists of the identity element alone.
6. (a) i. What is a group?
ii. What is a subgroup of a group?
iii. What is a cyclic group?
(b) show that the set of all 2×2 singular matrices is a group under multiplication 0°
(c) Show that the order of a subgroup of a finite group G divides the order of the gre
