University of Agriculture, Abeokuta, Department of Mathematics 2009/2010 First Semester Examination July 2010 MTS211 - Abstract Algebra

INSTRUCTION: Answer Question 5 OR 6 and any other three Questions Time: $1\frac{3}{4}$ hrs

- 1. (a) Define the following terms
 - i. A greatest common divisor of integers a and b
 - ii. A least common multiple of the set $\{a_i\}, i=1,2,...,n$ and $a_1,a_2,...,a_n$ are non zero integers
 - (b) Prove that if a, b be two non-zero integers, then d = (a, b) exist . Moreover prove that d = ua + vb for some integers u, v.
 - (c) If d is g.c.d of (1824, 760), find the integers u, v such that d = ua + vb.
- 2. (a) i. State the Division algorithm theorem for integers.ii. State the unique factorization theorem.
 - (b) Proof that there are infinitely many primes.
 - (c) Let $S = \{1, 2, 3, 4, 5\}$, Let a mapping $f: S \to S$ be defined as f(1) = 1, f(2) = 3, f(3) = 3, f(4) = 4, f(5) = 2. Let g be an injective mapping on S given by g(1) = 4, g(3) = 3, g(5) = 5. If gof = fog, find the values of g(2) and g(4).
- 3. (a) i. Define an indexing set

ii. Define a cartesian product or product set

(b) Let

 $\Omega = \{a, b, c\}, S_a = \{1, 2, 3, 6, 8, 10\}, S_b = \{2, 4, 6, 7, 9\}, S_c = \{4, 11, 6, 1, 3, 18\}.$ Compute the set sum $S_a \bigvee S_b \bigvee S_c$. How many elements are in the set. Compare their number with those in $S_a \bigcup S_b \bigcup S_c$.

- (c) Using the first principle of mathematical induction, show that 17 divides $(3 \times 5^{2n+1} + 2^{3n+1})$ for any $n \in \mathbb{N}$.
- 4. (a) i. Define an equivalence relation τ on a set S.

ii. Define an equivalence class and quotient set.

- (b) Let $S = \mathbf{Z}$, $a, b \in S$. Define $a\tau b$ by 5 divides (a-b). Show that τ is an equivalence relation and determine the equivalence class.
- (c) Consider $(\mathbf{R}, *, \bigotimes)$ where a * b = ab and $a \bigotimes b = a + b + ab$ for all $a, b \in \mathbf{R}$.
 - i. is * distributive over \otimes
 - ii. is \bigotimes distributive over $\ast.$
- 5. (a) i. Define a homomorphism of a group

ii. Define an isomorphism and an epimorphism of groups

- (b) prove that a homomorphic image of a group is also a group.
- (c) Prove that the homomorphism $\phi: G \to G'$ is injective if and only if $ker\phi$ consists of the identity element alone.
- 6. (a) i. What is a group?
 - ii. What is a subgroup of a group?
 - iii. What is a cyclic group?
 - (b) show that the set of all 2×2 singular matrices is a group under multiplication of
 - (c) Show that the order of a subgroup of a finite group G divides the order of the group.