University of Agriculture, Abeokat, Department of Mathematics
 2009/2010 Second Semester Examination October 2010 MTS212 - Linear Algebra

INSTRUCTION: Answer any four Questions Time: $1 \frac{3}{4}$ hrs

1. (a) Define a vector space V and subspace U of V.
(b) Let U and W be subspaces of a finite-dimensional vector space V over a field F. Show that:
i. $U+W$ is a subspace of V, where $U+W=\{\{u+w\} \mid u \in U, w \in W\}$ is called the linear sum of U and W
ii. $U \cap W$ is a subspace of V
2. (a) Define linearly independent and basis for a vector space V
(b) Establish the linear dependent or independent of vectors
$v_{1}=(1,0,-1,2), v_{2}=(1,3,1,6), v_{3}=(1,5,-1,16), v_{4}=(4,1,0,2)$ in \Re^{4} and find the dimension of the space spanned by these vectors
3. (a) Define a linear transformation T and the null-space of T
(b) i. Let $M_{2,3}(F)$ denote the vector space of 2×3 matrices over a field F. Prove that $M_{2.3}(F)$ is isomorphic to the vector space F^{6} over F
ii. Find a basis and dimension for a subspace of $M_{2,3}(F)$ generated by $\left(\begin{array}{lll}1 & 2 & \frac{2}{3} \\ 0 & 1 & 3\end{array}\right),\left(\begin{array}{ccc}3 & -1 & 1 \\ 1 & 0 & 2\end{array}\right) \cdot\left(\begin{array}{ccc}4 & 0 & 3 \\ 2 & -3 & 1\end{array}\right)$
4. (a) What do you understand by a non-homogeneous svstent of linear equations
(b) Verify if the following system is consistent or not. Solve if possible over the field Q $3 x+2 y-7 z-3 w=1$
$7 x-5 y+3 z+22 w=12$
5. (a) Define the solution space of the homogencous system of linear equations
(b) Find the value of λ for which the system of linear equations
$(2-\lambda) x+2 y+3=0$
$2 x+(4-\lambda) y+7=0$
$2 x+5 y+(6-\lambda)=0$
are consistent and find the values of x, y corresponding o each of the values of λ over

- the field \Re of real numbers

6. (a) Given a linear transformation $T: V_{n}(F) \rightarrow V_{n}(F)$, define the eigenvalue and eigenvector of T
(b) Find the characteristic polynomial for the matrix A over R

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

and show by direct substitution that this matrix satisfies its characteristic equation. Find the characteristic roots, characteristic vectors and minimal polynomial of A

