## UNIVERSITY OF AGRICULTURE, ABEOKUTA <br> B.Sc Degree Examination <br> 2009/2010 SECOND SEMESTER EXAMINATIONS <br> MATHEMATICS

MTS 232: ORDINARY DIFFERENTIAL AND DIFFERENCE EQUATIONS
Thursday, October 14, 2010. Time Allowed: 3 Hours . Attempt ANY THREE QUESTIONS.

1(a) State a necessary and sufficient condition for the following differential equation to be exact:

$$
\begin{equation*}
P(t, x) d t+Q(t, x) d x=0 . \tag{1.1}
\end{equation*}
$$

Determine if the o.d.e.

$$
\begin{equation*}
x \sin t d t+\cos t d x=0 \tag{1.2}
\end{equation*}
$$

is exact and obtain its solution.
1(b) Write down an integrating factor for the o.d.e.

$$
\begin{equation*}
\frac{d x}{d t}+a_{0}(t) x=a_{1}(t) . \tag{1.3}
\end{equation*}
$$

Hence or otherwise, solve

$$
\begin{equation*}
\cot t \frac{d x}{d t}+x=\cos t . \tag{1.4}
\end{equation*}
$$

2(a) Given the primitive function

$$
\begin{equation*}
x=a e^{t}+b \sin t \tag{2.1}
\end{equation*}
$$

where $a$ and $b$ are arbitrary constants, find the differential equation associated with it.

2(b) If the movement of a particle is described by the o.d.e.

$$
\begin{equation*}
\frac{d v}{d t}=\frac{p}{R-p^{2} v} \tag{2.2}
\end{equation*}
$$

where $R$ and $p$ are known constants, deduce that

$$
\begin{equation*}
t=\frac{R v}{p}-\frac{1}{2} p v^{2} \tag{2.3}
\end{equation*}
$$

if $v=0$ when $t=0$.

3(a) Solve the following o.d.e.

$$
\begin{equation*}
\frac{d x}{d t}=\frac{2 t x+3 x^{2}}{t^{2}+2 t x} \tag{3.1}
\end{equation*}
$$

3(b) If an object is heated to $300^{\circ} \mathrm{F}$ and allowed to cool in a room where the ambient temperature is $80^{\circ} \mathrm{F}$. What will be its temperature after 20 minutes if after 10 minutes, the temperature is $250^{\circ} \mathrm{F}$ ? Hint : Employ Newton's law of cooling described by the o.d.e.

$$
\begin{equation*}
\frac{d U}{d t}=-K\left(U(t)-U_{0}\right) \tag{3.2}
\end{equation*}
$$

where $U(t)$ is the temperature of body at time $t$ and $U_{0}$ is the constant temperature of the surrounding medium with $K$ being a positive constant.

4(a) Find the two linearly independent solutions of the homogeneous o.d.e. associated with

$$
\begin{equation*}
x^{\prime \prime}+x=\tan t \tag{4.1}
\end{equation*}
$$

Use the method of variation of constants to obtain the particular solution of (4.1) and then write down its general solution.

4(b) Show that the o.d.e.

$$
\begin{equation*}
t \frac{d^{2} x}{d t^{2}}=2\left[\left(\frac{d x}{d t}\right)^{2}-\frac{d x}{d t}\right] \tag{4.2}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
F\left(t, x^{\prime}, x^{\prime \prime}\right)=0 \tag{4.3}
\end{equation*}
$$

Solve (4.3) by using the transformation

$$
v=\frac{d x}{d t}
$$

5(a) Given that

$$
\begin{equation*}
u_{r}=P 4^{r} \tag{5.1}
\end{equation*}
$$

where $P$ is an arbitrary constant, obtain a first order difference equation from (5.1).

5(b) Solve the difference equation

$$
\begin{equation*}
u_{r+1}-a_{r} u_{r}=0 \tag{5.2}
\end{equation*}
$$

