UNIVERSITY OF AGRICULTURE, ABEOKUTA B.Sc Degree Examination
 2009/2010
 SECOND SEMESTER EXAMINATIONS MATHEMATICS
 MTS 242: Mathematical Methods
 Tuesday, October 5, 2010. Time Allowed: 2 1/2 Hours . Attempt ANY Four questions.

1(a) Show using the definition of a limit that

$$
\lim _{(x, y) \rightarrow(5,7)}(3 x+2 y)=29
$$

1(b) Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}-x^{2}}{x^{2}+y^{2}}
$$

does not exist.

2(a) Find the domain of the function

$$
f(x, y)=\frac{\sqrt{x-y}}{x+y}
$$

2(b) Let $f(x, y)=3 x y^{2}-2 x^{2} y$
then find both partial derivatives f_{x} and f_{y}.
3(a) If a particle is falling in a fluid, then according to stoke's law, the velocity of the particle is given by

$$
V=\frac{2 g}{9}\left(\rho_{p}-\rho_{f}\right) \frac{r^{2}}{\nu},
$$

where g is the acceleration due to gravity, $\rho_{p}=$ density of particle, $\rho_{f}=$ density of fluid, $r=$ radius of particle and $\nu=$ the absolute viscosity of the liquid.
Calculate $V_{\rho_{p}}, V_{\rho \rho}, V_{r}, V_{\nu}$.
3(b) Find the Taylor series expansion of $\cos x$ about the point $a=2 \pi$.

4(a) Use the binomial series to estimate $\sqrt{1.25}$ with an error of less than 0.001 .
4(b) In each of the following problems ((i) through (iii)), a, b, and c refer to the equation $f(b)-f(a)=(b-a) f^{\prime}(c)$, which expresses the Mean Value Theorem. Given $f(x), a$, and b, find c.
(i) $f(x)=x^{2}+2 x-1 ; a=0, b=1$
(ii) $f(x)=x^{3} ; a=0, b=3$
(iii) $f(x)=x^{\frac{2}{3}} ; \quad a=0, b=1$

5(a) Find the volume of the solid whose base is in the $x y$ - plane and is the triangle bounded by the x - axis, the line $y=x$, and the line $x=1$, while the top of the solid is in the plane.
$z=f(x, y)=3-x-y$.
5(b) Find the polar moment of inertia about the origin of a thin plate of density $\delta=1$ bounded by the circle $x^{2}+y^{2}=1$.

6 (a) If $\mathbf{F}=y \mathbf{i}+x \mathbf{j}$, evaluate the line integral $\int_{A}^{B} \mathrm{~F} . d \mathrm{R}$ along the straight line from $A(1,1,1)$ to $B(3,3,3)$.

6(b) Use Green's theorem to find the area enclosed by the ellipse $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi$, where $M=y$ and $N=x$.

EOA/ME/me/ © CUNAAB., 2010.

