DEPARTMENT OF MATHEMATICS

UNIVERSITY OF AGRICULTURE, ABEOKUTA 2009/2010 SECOND SEMESTER EXAMINATIONS
MTS 314 THEORY OF MODULES TUE OCTOBER 5, 2010
INSTRUCTION: ANSWER ALL QUESTIONS
Time ALLOWED: $\quad 2 \frac{1}{2}$ HOURS

1. (a) Let R be any ring and let $A=R \times \mathcal{Z}$ where \mathcal{Z} is the set of iniegers. Define + and \cdot in A by:

$$
\begin{aligned}
(a, m)+(b, n) & =(a+b, m+n) \\
(a, m) \bullet(b, n) & =(a b+n a+m b, m n), \forall a, b \in R \text { and } m, n \in \mathcal{Z}
\end{aligned}
$$

i. Show that $(A,+, \bullet)$ is a ring with $(0,1)$ as the unity.
ii. If $\phi: R \rightarrow A$ is a mapping defined by $\phi(a)=(a, 0) \forall a \in R$, show that ϕ is an injective homomorphism.
(b) i. Let R be any ring with unity and for each $a \in R$, let there exist $x \in R$ such that $a^{2} x=a$. Show that $a x=x a$ and also show that ax and xa are idempotents in $Z(R)$, the center of R.
ii. Let $B=\{0,2,4,6,8\}$. Show that B is a subring of \mathcal{Z}_{10}, the ring of integers modulo 10 with unity different from the unity of \mathcal{Z}_{10} and state the unity of B.
iii. Let R be a commutative ring and let a and b be nilpotent elements of R . Show that ($a+b$) is also nilpotent.
(c) Let R be a ring and let I be a subset of R. Iet

$$
\begin{aligned}
& r(I)=\{r \in R: I r=0\} \text { and } \\
& l(I)=\{r \in R: r I=0\}
\end{aligned}
$$

i. Show that $r(I)$ and $l(I)$ are right and left ideals of R respectively.
ii. Given that A is an ideal in R. show that $r(I)$ and $l(I)$ are ideals in R.
(d) If $R=\mathcal{Z}$ and $I=(42), J=(132)$ are ideals of R , compute ($\mathrm{I}: \mathrm{J}$), the ideal quotient of I and J.
2. (a) i. Let I be an ideal of R and define the multiplication map *: $[R / 4 ⿻+8 \rightarrow R \rightarrow R / I$ by

$$
*(m+I, n)=m n+I .
$$

Show that R / I is a right R-module.
ii. Show that the direct product of two distinct R-modules is also an R-module.
iii. Let $\left(M_{i}\right)_{i \in I}$ be a family of R-submodules of an R-module M. Show that $\bigcap_{i \in I} M_{i}$ is also an R-submoduie.
iv. Let M be an R -module and for $m \in M$, let K be a set defined by

$$
K=\{r m+n m: r \in R, n \in \mathcal{Z}\} .
$$

Show that K is an R -subinodule of M .
(b) i. Let M be an R-module and let r be some fixed element of R. Show that the mapping $f: M \rightarrow M$ defined by $f(m)=r m \forall m \in M$ is an R -homomorphism.
ii. Let A and B be R -submodules of R -modules M and N respectively. Show that

$$
[M \times N] /[A \times B] \cong[M / A] \times[N / B] .
$$

(c) Define the following:
i. Exact sequence
ii. Short exact sequence
iii. Split exact sequence.
iv. Cokernel
v. Coimage
(d) Draw a commutative diagram of R -modules with exact rows and columns.
(a) i. Let U and V be vector spaces over the field F. Show t at

$$
\operatorname{Hom}_{F}(U, V) \cong F^{m \times n} .
$$

ii. Compute the rank of the linear mapping $\phi: \mathcal{R}^{5} \rightarrow \mathcal{R}^{4}$ given by

$$
\phi(a, b, c, d, e)=(2 a+3 b+c+4 e, 3 a+b+2 c-d+e, 4 a-b+3 c-2 d-2 e, 5 a+4 b+3 c-d+6 e) .
$$

(b) Let $A=\left[\begin{array}{ccc}-x & 4 & -2 \\ -3 & 8-x & 3 \\ 4 & -8 & -2-x\end{array}\right]$ be a given matrix. Compute:
i. the invariant factors of A over the ring $\mathcal{Q}[x]$,
ii. the rank of A.
(a) Let $3=\{\sin x, \cos x, \sin 2 x, \cos 2 x\}$ and $V=\operatorname{span}(B)$. In the space of all continuous functions on $\mathcal{R} . \mathrm{V}$ is a four-dimensional subspace with basis B . Define $\phi: V \times V \rightarrow \mathcal{R}$ by

$$
\phi(f, g)=f^{\prime}(0) \bullet g^{\prime \prime}(0) .
$$

Show that ϕ is a bilinear form on V and compute its matri $r_{,}$, resentation wrt the basis B.
(b) Let q be the quadratic form associated with the symmetric bilinear form f. Show that:
i. $2 f(u, v)=q(u+v)-q(u)-q(v)$,
ii. $4 f(u, v)=q(u+v)-q(u-v)$.
(c) Reduce the quadratic polynomial

$$
\begin{aligned}
q(a, b, c, d)= & a^{2}+2 a b+2 b^{2}+6 c^{2}-4 a c-10 b c \\
& +11 d^{2}-6 a d-2 b d+18 c d
\end{aligned}
$$

to a diagonal form and state its rank and signature.

