University of Agriculture, Abeokuta,
 Department of Mathematics
 2009/2010 Second Semester BSc. Degree Examination October 2010 MTS322 - Vectors and Tensors

INSTRUCTION: Answer Any Four Questions Time: 2 Hours

1. (a) (i) let A, B, C and D be vectors such that

$$
\begin{equation*}
A \times(B \times C)=B(A \cdot C)-C(A \cdot B) \tag{1.1}
\end{equation*}
$$

Determine $P_{1} \times\left(P_{2} \times P_{3}\right)+P_{2} \times\left(P_{3} \times P_{1}\right)+P_{3} \times\left(P_{1} \times P_{2}\right)$, where $P_{i}(i=1,2,3)$ are vectors.
(ii) If in addition to (1.1), $A \cdot(B \times C)=(A \times B) \cdot C$, show that

$$
(A \times B) \cdot(C \times D)=(A \cdot C)(B \cdot D)-(A \cdot D)(B \cdot C)
$$

Hence determine the value of

$$
(A \times B) \cdot(C \times D)+(B \times C) \cdot(A \times D)+(C \times A) \cdot(B \times D)
$$

(b) Given $r_{1}=2 i+j+k, r_{2}=i-3 j+2 k, r_{3}=2 i-j-3 k, r_{4}=3 i-2 j-5 k$, determine scalars λ_{1}, λ_{2} and λ_{3} so that

$$
r_{4}=\sum_{i=1}^{3} \lambda_{i} r_{i}
$$

(c) Let u and v be non-collinear vectors and

$$
P=(2 x+y+1) u+(x+4 y) v, Q=(2 x-3 y-1) u+(y-2 x+2) v
$$

determine $2 x-3 y$ if $3 P-2 Q=0$.
2. (a) A particle moves so that its position vector is given by $r=\cos \omega t i+\sin \omega t j$ where ω is a constant. Show that
(i) the velocity v of the particle is perpendicular to r,
(ii) the acceleration a is directed toward the origin and its magnitude proportional to the distance from the origin,
(iii) $r \times v$ is a constant vector.
(b) (i) If $P=\sin t i+\cos t j+t k, Q=\cos t i-\sin t j-3 k$ and $R=2 i-3 j-k$, find

$$
\frac{d}{d t}(P \times Q \times R)
$$

at $t=0$.
If e_{1} and e_{2} are constant vectors and λ is a scalar, and given that $H=$ $e^{-\lambda x}\left(e_{1} \sin \lambda y+e_{2} \cos \lambda y\right)$, determine

$$
\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}
$$

3. (a) Let $F=\left(4 x y-3 x^{2} z^{2}\right) i+2 x^{2} j-2 x^{3} z k$ and $r=x i+y j+z k$, a space curve. Show that $\int_{\Gamma} F \cdot d r$ is independent of the curve Γ joining any two given points. Show also that there exists a differentiable function ϕ such that $F=\nabla \phi$.
(b) Consider $A=\frac{-y i+x j}{x^{2}+y^{2}}$. Compute
(i) $\nabla \times A$ and
(ii) $\oint A \cdot d r$ around any closed curve.
4. (a) Let P be a scalar field and U a vector field. What do you understand by (i) gradient of P, (ii) divergence U and (iii) curl of U. (iv) Show that $\nabla \cdot(P U)=(\nabla P) \cdot U+U(\nabla \cdot P)$.
(b) (i)If $q=c \times r$, where c is a constant vector and $r=x i+y j+z k$, show that $c=\frac{1}{2}(\nabla \times q)$.
(ii) Determine constants λ_{1}, λ_{2} and λ_{3} such that $u=\left(x+2 y+\lambda_{1} z\right) i+\left(\lambda_{2} x-3 y-\right.$ $z) j+\left(4 x+\lambda_{3} y+2 z\right) k$ is conservative.
5. (a) State (i) the divergence theorem, (ii) the Green's theorem and, (iii) the Stoke's theorem.
(b) (i) If $F=\nabla \phi$ and $\nabla \cdot F=0$, show that

$$
\iiint_{R}(F \cdot F) d \tau=\iint_{S} \phi F \cdot n d S
$$

where S is a closed surface enclosing the region R.
(ii) Use Stoke's theorem to evaluate the line integral

$$
\int_{\Gamma} e^{-x} a \cdot d r
$$

where $a=i \sin y+j \cos y$ and Γ is the rectangle with vertices
$(0,0,0),(\pi, 0,0),\left(\pi, \frac{\pi}{2}, 0\right),\left(0, \frac{\pi}{2}, 0\right)$.
6. (a) Given that $x=\rho \sin \theta \cos \phi, y=\rho \sin \theta \sin \phi$ and $z=\rho \cos \theta$, determine

$$
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}
$$

Hence compute

$$
\iiint_{V} \nabla \cdot A d V
$$

where $A=x z^{2} i+\left(x^{2} y-z^{3}\right) j+\left(2 x y+y^{2} z\right) k$ and V is the region bounded by the
hemisphere and the $x y$-plane.
(b) (i) Consider

$$
\begin{gathered}
A_{i}=B_{i k} m_{k} \\
m_{k}=C_{k l} n_{l} ; \quad(i, k, l=1,2)
\end{gathered}
$$

Expand the repeated sum completely.
(ii) Write the terms of $\bar{g}_{r s}=g_{j k} \frac{\partial x^{j}}{\partial \bar{x}^{r}} \frac{\partial x^{k}}{\partial \bar{x}^{s}}, N=3$.
(iii) If

