University of Agriculture, Abeokuta,
Department of Mathematics 2009/2010 Second Semester
B.Sc. Degree Examination October 2010 MTS342 - Mathematical Methods II•

INSTRUCTION: Answer 2 questions from each section Time: $2 \frac{1}{2} \mathrm{Hrs}$

SECTION A

Answer any 2 questions from this section.

1. (a) When is a set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ said to
i. linearly dependent on some interval $a \leq x \leq b$
ii. linearly independent on some interval $a \leq x \leq b$
iii. Define the Wronskian of $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$.
iv. Prove or disprove that $f_{1}(x)=\sin ^{2} x$ and $f_{2}(x)=1-\cos 2 x$ are linearly independent on $-\infty<x<\infty$.
(b) Using the method of variation of parameters, solve the following equations;
i. $y^{\prime \prime}+y=\sec x \tan x$
ii. $y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+e^{-x}}$
2. (a) Given that $u_{1}(x)$ is a homogeneous solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=f(x) \tag{1}
\end{equation*}
$$

by substituting $y=k(x) u_{1}(x)$, show that

$$
u_{2}(x)=\lambda u_{1}(x) \int \frac{d x}{\alpha u_{1}(x)^{2}}+\gamma u_{1}(x)
$$

is also an independent solution of the homogeneous part of the differential equation (1), where $\alpha=e^{\int a_{1}(x) d x}$ and λ and γ are constants.

Hence or otherwise, derive the Abel's formula

$$
W\left(u_{1}(x), u_{2}(x)\right)=\lambda e^{-\int a_{1}(x) d x}
$$

(b) i. Given that $u_{1}=x$ is a solution of the equation $x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+x\left(6-x^{2}\right) y^{\prime}-\left(6-x^{2}\right) y=0$. Show that $y=k(x) x$ will also be a solution provided that k^{\prime} satisfies the equation $\left(k^{\prime}\right)^{\prime \prime}-k^{\prime}=0$. Find the other solution.
ii. Given that $u_{1}=x$ is a solution of the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$. Find the second solution and the general solution.
(a) Given a differential equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{1}(x) y=0 \tag{2}
\end{equation*}
$$

when is the point x_{0} called:
i. an ordinary point of the differential equation (2)
ii. a singular point of the differential equation (2)
iii. a regular singular point of the differential equation (2)
iv. By using the Leibnitz-Maclaurin's method, find the power series solution of the equation $\left(1-x^{2}\right) y^{\prime \prime}-5 x y^{\prime}-3 y=0$.
(b) i. By using the Frobenius method and assuming a series solution of the type $y=\sum_{r=0}^{\infty} a_{r} x^{m+r}$, obtain the general solution of the Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0 .
$$

ii. The Rodrigues' formula for the Legendre polynomial is

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} .
$$

Verify this formula for $n=0,1,2,3$.

SECTION B

Answer any 2 questions from this section.

4. (a) Define the gamma function of the variable x. Deduce the gamma functions of the following from the first principles
i. $\Gamma(x+1)$
ii. $\Gamma\left(\frac{1}{2}\right)$
(b) Given that $I_{m, n}=\frac{m-1}{m+n} I_{m-2, n}$ and $B(m, n)=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$.

Prove that

$$
B(m, n)=\frac{(m-1)(n-1)}{(m+n-1)(m+n-2)} B(m-1, n-1) .
$$

(c) Evaluate the following
i. $B(4,3)$
ii. $B(5,3)$
5. Given the Legendre's equation

$$
\left(1-x^{2}\right) y_{2}-2 x y_{1}+\alpha(\alpha+1) y=0
$$

where α is a real constant.
(a) By using the Frobenius method, obtain the solution

$$
y=a_{0}\left[1-\frac{(k+1)}{2!} x^{2}+\frac{k(k-2)(k+1)(k+3)}{4!} x^{4}\right]
$$

for $c=0$.
(b) Derive the recurrence relation for $c=1$ for the Legendre's equation.
(c) Using the results obtained in (a) and (b) above, obtain the following polynomials (i) $P_{2}(x)$ (ii) $P_{3}(x)$
6. (a) Evaluate the following integrals
i.

$$
I=\int_{0}^{1} x^{5}(1-x)^{4} d x
$$

ii.

$$
I=\int_{0}^{\frac{\pi}{2}}[\tan \theta]^{\frac{1}{2}} d \theta
$$

(b) State the convolution theorem for two functions $f(t)$ and $g(t)$. If $f(t)=t$ and $g(t)=e^{t}$, find the convolution of f and g.
(c) Solve the equation $y^{\prime \prime}+3 y^{\prime}+2 y=4 x$, where $y(0)=y^{\prime}(0)=0$ using the laplace transform method.

