UNIVERSITY OF AGRICULTURE, ABEOKUTA, NIGERIA B.Sc.(Hons) MATHEMATICS DEGREE EXAMINATION 2009/2010 FIRST SEMESTER

MTS 411 - ADVANCED ALGEBRA I

JUNE 2010
TIME ALLOWED: $2 \frac{1}{2}$

INSTRUCTION(S): Attempt any FOUR (4) Questions

(All rings are assumed to be commutative)

1. (a) Let $f: R_{1} \longrightarrow R_{2}$ be a ring homomorphism. The kernel I of f is an ideai of R_{1} and the image C of f is a subring of R_{2}. Show that quotient ring R_{1} / I is isomorphic to C.
(b) Let I be an ideal of a ring R. Show that there is a bijection between the set of all ideals J of R such that $I \subset J$ and the set of all ideals R / I such that $\{J: I$ an ideal of $R, I \subset J\} \longrightarrow\{K: K$ an ideal of $R / I\}, J \longrightarrow J / I$
(c) Prove that any non-zero ring R is field if and only if it has exactly two different ideals (0) and (1)
2. (a) Let N, K be R-submodules of an R-module M. A map $f: N \oplus K \longrightarrow N+K$ defined by $f((n, k)=n+k$ is a surjective R-module homomorphism whose kem. is R-isomorphic to the submodule $N \cap K$. Prove that $N \oplus K$ is isomorphic $N+K$ if $N \cap K=\{0\}$
(b) i. Prove that the module $R^{n} \oplus_{1 \leqslant i \leqslant n} R$ is a free R-module of rank n ii. Show that every free R-module of rank n is isomorphic to R^{n}.
(c) Let R be a ring and M and R-module, show that $M \otimes_{R} R \simeq M$
3. (a) When is a R-module M called a Noetherian module?
(b) Let R be a ring and I an ideal of R. If R / I is a Noetherian R-module, show that R / I is a Noetherian ring.
(c) Let M be an R-module and N a submodule of M. Show that M is a Noetherian R-module if and only if N and M / N are Noetherian.
(d) Let R be a Noetherian ring and let M be an R-module of finite type. Show that M is a Noetherian R-module.
4. (a) When is a ring R called a unique factorization domain (UFD)?
(b) Prove that every proper non-zero ideal of a principal ideal domain R is the product of maximal elements in the proper ideals of $R(\operatorname{maxp})$ whose collection is uniquely determined.
(c) If R is a unique factorization domain. Let p be a non-zero element of R which is not a unit. Prove that p is a prime element of R if and only if (p) is a non-zero prime ideal of R.
(a) i. Let R be a ring and $R[X]$ be the polynomial ring over R. When is a polynomial $f \in R[X]$ said to be primitive?
ii. Let K be the quotient field of R. Prove that for every non-zero polynomial $f \in K[X]$ there is a non-zero $a \in K$ such that $a f \in R[X]$ is primitive.
(b) Prove that the product of two primitive polynomial is primitive.
(c) Let R be a unique factorization domain and K be the quotient field of R. Let $f \in R[X]$ be a primitive polynomial of positive degree. Show that f is irreducible in $R[X]$ if and only if f is irreducible in $K[X]$
