UNIVERSITY OF AGRICULTURE, ABEOKUTA
 Department of Mathematics,
 B.Sc Degree Examinations 2009/2010 First Semester
 MTS 423, Functional Analysis, Time Allowed: 3Hours. Attempt Any 4 Queștions

Question 1

(a) Let $C([0,1])$ denote the space of continuous real valued unctions on the interval $[0,1] \subseteq \mathbb{R}$.
Show that $C([0,1])$ is a normed space when equipped with the sup norm:

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|, \quad \forall f \in C([0,1])
$$

(b) Let X be a linear space. For each pair $(x, y) \in X \times X$, lefine a map $A: X \times X \rightarrow$ $X \times X$ by

$$
A(x, y)=(x+2 y, x-2 y)
$$

(i) Is A linear ?
(ii) Find the inverse $\operatorname{map} A^{-1}$ if it exists.
(c) Let X and Y be normed spaces. When do we say that a linear map T : $D(T) \subseteq X \rightarrow Y$ is bounded ?
Let $X=Y=C([0,1])$. Show that the integral operator $T: X \leadsto Y$ defined by :

$$
(T X)(t)=\int_{0}^{1} K(t, s) X(s) d s
$$

is a bounded linear operator, where

$$
K:[0,1] \times[0,1] \rightarrow \mathbb{R}
$$

, is a continuous function and $X \in C([0,1])$.

Question 2

(a) Show that all linear maps from a finite dimensional normed space are automatically continuous.
(b) (i) When do we say that a normed space is Banach?
(ii) Let X be the linear space of all polynomials on the interval $(0,1)$ with values in \mathbb{R}.
Define $\|\cdot\|$ on X by

$$
\|x\|=\sup _{t \in(0,1)}, x \in X
$$

Show that $(X,\|\cdot\|)$ is an incomplete normed space.
(c) Show that the space $(C(a, b),\|\cdot\|)$ is a Banach space, where $C(a, b)$ is the linear space of real valued continuous functions on the interval $(a, b), a<b, a, b \in \mathbb{R}$ equipped with the sup norm.

Question 3

(a) Define an inner product space $(H,<\cdot, \cdot>)$.
(b) For each $x \in H$, show that $\|x\|=\sqrt{\langle x, x\rangle}$ is a norm on H.
(c) Let H be a pre-Hilbert space. Prove the Cauchy-Schwartz inequality:

$$
|<x, y>| \leq\|x\|\|y\|, \forall x, y \in H .
$$

(d) Equip $C(0,1)$ with the supremum norm and let $T=\frac{d}{i t}$.
(i) What is the natural domain of T in $C(0,1)$?
(ii) Show that T is linear.

Question 4

(a) Let X and Y be normed spaces and $T: X \rightarrow Y$. When is ', said to be continuous at a point x_{0} in X ? (b) If $X=C[0,1]$ equipped with the ssp norm, and $Y=\mathbb{R}$, show that if X_{0} is a fixed member of $C[0,1]$, then the map

$$
H(f)=\int_{0}^{1} 2 X_{0}(t) f(t) d t
$$

is a bounded linear transformation from $C[0,1]$ to \mathbb{R}.
(c) Let H be a Hilbert space with inner product $\left\langle\cdot, \gg\right.$ and let $X_{0}, Y_{0} \in H$ be fixed. Define $X_{0} \otimes Y_{0}: H \rightarrow H$ by

$$
\left(X_{0} \otimes Y_{0}\right)(x)=\left\langle x, Y_{0}>x_{0}, x \in H\right.
$$

Show that $X_{0} \otimes Y_{0}$ is bounded and linear on H and that

$$
\left\|X_{0} \otimes Y_{0}\right\|: \leq\left\|X_{0}\right\|\left\|\dot{Y}_{0}\right\|:
$$

Question 5

(a) Prove or disprove the following statement: The Cartesian product of two Banach spaces X and Y is Banach.
(b) State and prove the Riesz Representation Theorem on a Hilbert space.
(c) Let (X, ρ) be a non empty complete metric space and $T: X \rightarrow X$, a contraction on X.
Show that T has a unique fixed point.
Dr E.O. Ayoola, June/July 2010.

