UNIVERSITY OF AGRICULTURE ABL OICUTA UNIVERSITY EXAMINATIONS
 2009/2010
 B.Sc. Degree Examination
 MTS 441 (Ordinary Differential Equations) 2nd July, 2010-9a.m, - 12noon

Instructions: Full marks will be awarded for complete and kgible answers to THREE QUESTIONS.

1(a) Given an n-th order ODE of the form:

$$
\begin{equation*}
F\left(t x, x^{\prime}, \cdots, x^{(n)}=0\right. \tag{1.1}
\end{equation*}
$$

where $x^{(n)}$ is the n-th order derivative of x with respect to t and F a function defined on some subset of \mathbb{R}^{n+2} between the variables $\left(t, x, x^{\prime} \cdots x^{(n)}\right)$ such that it is implicit in nature and may represent a collection of some differential equations. To av id ambiguity and assuming that the relation is solvable for $x^{(n)}$,
(i) write (1.1) in the form where the right hand side

$$
\left.f: I \times \mathcal{D}\left(\subseteq \mathbb{R}^{n}\right)\right) \longrightarrow \mathbb{R}^{n+1}
$$

with $I=(a, b)$
(ii) reduce the n-th order equation so obtained to an equivalent system of n first order \rightarrow equations
(1(b)(i) State conditions for the initial value problem

$$
\begin{equation*}
x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0} \tag{1.2}
\end{equation*}
$$

to have at most one solution $x(t)$. From your statement, indicate what condition(s) if relaxed. would impair uniqueness of the solution $x(t)$ of (1.2)
(ii) With the help of the method of successive approximations (Picard's iteration technique) solve the initial value problem:

$$
\begin{equation*}
x^{\prime}=x ; \quad x \in \mathbb{R}, \quad x(0)=1 \tag{1.3}
\end{equation*}
$$

2(a) Consider the linear system

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{2.1}
\end{equation*}
$$

where the elements of the $n \times n$ matrix A are defined and continuous on some interval $q<t<r$,
(i) what is meant by a fundamental matrix of (2.1)

Show that:
(ii) if Φ is fundamental for (2.1) on (q, r) so also is ΨC for any constant non-singular $n \times n$ matrix ,
(iii) every fundamental matrix has the form ΦC.

2(b) With reference to the periodic system

$$
x^{\prime}=A(t) x ; A(t)=A(t+s) ; t \in \mathbb{R} s \neq G
$$

show that if $\Psi(t)$ (with $\Psi(0)=I, I$ being the identity matrix) is fundamental for (2.2), then
(i) $\Psi(t+s)$ is also fundamental for (2.2)
(ii) $\Psi(t+s)=\Psi(t) \Psi(s)$

3(a)(i) Solve the system

$$
x^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{3.1}\\
-2 & -3
\end{array}\right) x, \quad x(0)=\binom{1}{0}
$$

(ii) Employ the transformation

$$
\begin{equation*}
v=\exp \left[-\frac{1}{2} \int_{0}^{t} p(s) d s\right] \tag{3.2}
\end{equation*}
$$

in the linear second order homogeneous ODE

$$
\begin{equation*}
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0 \tag{3.3}
\end{equation*}
$$

to reduce the equation

$$
\begin{equation*}
t^{2} x^{\prime \prime}+\alpha t x^{\prime}+\beta x=0 \tag{3.4}
\end{equation*}
$$

to the normal form.
3(b) With reference to the equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x=0 \tag{3.5}
\end{equation*}
$$

where $q(t)$ is a real-valued, continuous function on $\left.t_{0} \leq t<\infty\right)$
(i) what do you understand by an "oscillatory equation". Justify your answer with a suitable example.
(ii) Show by using either of Sturm's theorem on oscillation of equations (if applicable) or otherwise that the zeros of the two linearly independent solutions of

$$
\begin{equation*}
x^{\prime \prime}+x=0 \quad\left(x^{\prime}=\frac{d x}{d t}\right) \tag{3.6}
\end{equation*}
$$

4(a) By considering the non-autonomous system

$$
\begin{equation*}
x^{\prime}=F(t, x) \tag{4.1}
\end{equation*}
$$

explain clearly what you understand by the notions: stability, inf rm stability and asymptotic stability of a solution $x(t)$ of (4.1)
4(b) Employ the Liapunov function

$$
\begin{equation*}
V\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+3 x_{2}^{2} \tag{4.2}
\end{equation*}
$$

to determine the stability of the trivial solution of the system

$$
\begin{align*}
x_{1}^{\prime} & =-6 x_{2}-\frac{1}{4} x_{1} x_{2}^{2} \tag{4.3}\\
x_{2}^{\prime} & =4 x_{1}-\frac{1}{6} x_{2}
\end{align*}
$$

