UNIVERSITY OF AGRICULTURE, ABEOKUTA. UNIVERSITY EXAMINATIONS

B.Sc. Degree Examination Mathematics

MTS 442 : Partial Differential Equations.

Tuesday, 12 October, 2010

Time : 3 HOURS

Write legible and correct Answers to any THREE QUESTIONS.

1 (a) Let $a, b, c \in C^{0}(\Omega), \Omega$ being a domain in \mathbb{R}^{3}. Give a concise description of how the integral surface of the quasilinear equation

$$
\begin{equation*}
a(t, x, u) u_{t}+b(t, x, u) u_{x}+c(t, x, u)=0 \tag{1.1}
\end{equation*}
$$

is related to the integral curves of the simultaneous equations

$$
\begin{equation*}
\frac{d t}{a}=\frac{d x}{b}=\frac{d u}{b} \tag{1.2}
\end{equation*}
$$

You may need to illustrate your answer with a geometrical interpretation.
What three distinct possibilities arise from the determination of an integral surface \mathcal{S} of (1.1) passing through a prescribed space curve

$$
\begin{equation*}
\mathcal{C}: u(x, 0)=h(x) ? \tag{1.3}
\end{equation*}
$$

Proceeding formally in view of the information obtained above solve the initial value problem

$$
\left.\begin{array}{rl}
u u_{t}+u_{x} & =1 \tag{1.4}\\
t & =s \\
x & =s \quad 0 \leq s \leq 1 \\
u & =\frac{1}{2} s
\end{array}\right\}
$$

From the foregoing deduce the detailed and sufficient requirement which admits a unique solution for the problem

$$
\left.\begin{array}{rl}
a u_{t}+b u_{x}+c & =0 \tag{1.5}\\
\mathcal{C}: t & =t_{0}(s) \\
x & =x_{0}(s) \quad 0 \leq s \leq 1 \\
u & =u_{0}(s)
\end{array}\right\}
$$

1(b) With reference to the general first order partial differential equation

$$
\begin{equation*}
F(t, x, u, p, q)=0 \tag{1.6}
\end{equation*}
$$

where $p=u_{t}, q=u_{x}$, write down five characteristic differential equations associated with the PDE (1.6). What are meant by the following concepts associated with (1.6):
(i) characteristic strip
(ii) element of a strip
(iii) strip condition?

Use the consequence of concepts in 1(b) above to seek an integral surface for the equation

$$
\begin{equation*}
t p+x q=p q \tag{1.7}
\end{equation*}
$$

which passes through

$$
\begin{equation*}
t=t_{0}, x=0, u=\frac{1}{2} t_{0} . \tag{1.8}
\end{equation*}
$$

2(a) Consider the initial value problem

$$
\left.\begin{array}{rl}
u^{2} u_{t}+u_{x} & =0 \tag{2.1}\\
u(t, 0) & =t
\end{array}\right\}
$$

Derive the solution

$$
u(t, x)=\left\{\begin{align*}
t, & x=0 \tag{2.2}\\
\frac{\sqrt{(1+4 t x)-1}}{2 x}, & x \neq 0, \quad 1+4 t x>0
\end{align*}\right.
$$

Do shocks ever develop? Show that $\lim _{x \rightarrow 0}=u(t, x)=t$.
2(b) Given the second order linear partial differential equation

$$
\begin{equation*}
a(x, t) u_{x x}+2 b(x, t) u_{t x}+c(x, t) u_{t t}=\Phi\left(x, t, u, u_{x}, u_{t}\right) \tag{2.3}
\end{equation*}
$$

where $(t, x) \in \mathcal{D}$, a domain of \mathbb{R}^{2}
(i) write down the characteristics for (2.3)
(ii) describe a method of classifying the equation into types in \mathcal{D}.
(iii) show that type of (2.3) are invariant under a regular transformation.
(3(a) Find the complete and singular solutions of the equation

$$
\begin{equation*}
u=p^{2}+q^{2} \tag{3.1}
\end{equation*}
$$

(Hint : You may consider (3.1) as of type $f(u, p, q)=0$ and assume that $F(t+a x)=$ $F(w)$ where a is an arbitrary constant).

3(b) Classify the following second order PDES into types showing these classification in the appropriate region of tx-plane :
(i) $2 t u_{t x}+2 x u_{t t}=0$.
(ii) $t u_{x x}+x u_{t t}=0$.

4(a) Reduce via a regular transformation the equation

$$
\begin{equation*}
x u_{t t}+(t+x) u_{t x}+t u_{x x}=0 \tag{4.1}
\end{equation*}
$$

to canonical form, write down and give geometrical illustrations of the characteristics, then find the general solution.

4(b) State conditions under which the following Cauchy problem admits a unique and analytic solution of the form

$$
\begin{gather*}
u(t, x)=\sum_{m=0} \sum_{n=0} \frac{D_{t}^{m} D_{x}^{n} u(0,0) t^{m} x^{n}}{m!n!} \text { in the neighbourhood of }(0,0) \\
\left.\begin{array}{r}
u_{t}=u u_{x} \\
u(0, x)=1+x^{2}
\end{array}\right\} \tag{4.2}
\end{gather*}
$$

VFP, Sept. 2010

