UNIVERSITY OF AGRICULTURE ABEOKUTA
 Department of Mathematics
 B.Sc Examinations
 MTS 443: Mathematical Methods III 2009/2010 First Semester Examinations TIME ALLOWED: 3 Hours

Instruction: Answer any 2 questions from each section.

SECTION A

1. a.(i) Let $\left\{\phi_{n}\right\}(n=1,2,3, \ldots)$ be an infinite set of functions on the interval $a \leq x \leq b$. When is $\left\{\phi_{n}\right\}$ said to be an (α) orthogonal system, (β) orthonormal system with respect to the weight function $r(x)$ defined on $a \leq x \leq b$.
(ii) Show that if the functions $g_{1}(x), g_{2}(x), \ldots$ form an orthogonal set on $a \leq x \leq b$, then the functions $g_{1}(c t+k), g_{2}(c t+k), \ldots$ where $c>0$ form an orthogonal set on the interval $\frac{a-k}{c} \leq t \leq \frac{b-k}{c}$.
(b) Let $\left\{P_{n}\right\}, n=1,2,3, \ldots$ be an infinite set of polynomial functions such that
(i) P_{n} is of degree $n, n=0,1,2,3, \ldots$
(ii) $P_{n}(1)=1, n=0,1,2,3, \ldots$ and,
(iii) the set $\left\{P_{n}\right\}$ is an orthogonal system with respect to the weight function r such that $r(x)=1$ on the interval $-1 \leq x \leq 1$.
Construct consecutively the members P_{0}, P_{1}, P_{2} and P_{3} of this set by writing
$P_{0}(x)=a_{0}$,
$P_{1}(x)=b_{0} x+b_{1}$,
$P_{3}(x)=c_{0} x^{2}+c_{1} x+c_{2}$.
$P_{4}(x)=d_{0} x^{3}+d_{1} x^{2}+d_{2} x+d_{3}$,
and determining the constraints in each expression so that it has the value 1 at $x=1$ and is orthogonal to each of the preceding expressions with respect to r on $-1 \leq x \leq 1$.
2. a. Given the second order differential equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \tag{2.1}
\end{equation*}
$$

Obtain the self-adjoint form

$$
\begin{equation*}
\left(p(x) \frac{d y}{d x}\right)^{\prime}+q(x) y=F(x) \tag{2.2}
\end{equation*}
$$

from (2.1). Hence or otherwise resolve the Legendre's differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y+n(n+1) y=0
$$

in the form (2.2).
b. Show that the Legendre's polynomials, $P_{n}(x)$ are orthogonal with respect to the weight function, $u(x)=1$ over the interval $[-1,1]$.
3. a. Find the eigenvalues and eigenfunctions of the given boundary value problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \quad(\lambda>0) \\
y(0)=0, y^{\prime}(1)=0
\end{gathered}
$$

b. Find the Fourier series of the sawtooth function

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
x+1,-1 \leq x \leq 0 \\
1-x, 0 \leq x \leq 1
\end{array}\right. \\
f(x+2)=f(x)
\end{gathered}
$$

Hence determine a series for $\frac{\pi^{2}}{8}$.

SECTION B

4. a. Define Fourier integral transform for a function $f(x)$.
b. Solve the boundary value problem

$$
y^{\prime \prime}(x)-k^{2} y(x)=-f(x),-\infty<x<\infty
$$

where k is a constant and $f(x)$ is specified such that $y(x), y^{\prime}(x) \rightarrow 0$ as $|x| \rightarrow \infty$ using Fourier Integral transform.
c. Obtain the solution for the other form of problem in (b) written as

$$
y^{\prime \prime}(x)+k^{2} y(x)=-f(x),-\infty<x<\infty
$$

5. a. State without proof the convolution theorem for Fourier transforms.
b. Given the Cauchy problem for wave equation

$$
U_{t t}-c^{2} U_{x x}=0, \quad-\infty<x<\infty, t>0
$$

where

$$
\begin{aligned}
U(x, 0) & =f(x), \quad-\infty<x<\infty \\
U_{t}(x, 0) & =g(x), \quad-\infty<x<\infty
\end{aligned}
$$

Show that

$$
U(\lambda, 0)=F(\lambda) \text { and } \frac{\partial U(\lambda, 0)}{\partial t}=G(\lambda)
$$

c. Obtain the complete solution of the problem in b.
6. a. State the Fourier's Integral theorem for the function $f(x)$ and state sulficient conditions for the theorem.
b. Give a brief statement of the Parseval's identity for the functions $f(x)$ and $g(x)$.
c. Given the boundary value problem

$$
U_{x x}+U_{y y}=0,0<x<\infty, 0<y<\infty
$$

with the boundary data

$$
\begin{gathered}
\ddot{U}(0, y)=0, U(x, y) \rightarrow 0 \text { as } x \rightarrow \infty, \text { uniformly in } y \\
U(x, \alpha)=0, U(x, 0)=f(x)
\end{gathered}
$$

Show that

$$
\frac{\partial^{2} U_{s}(\lambda, y)}{\partial y^{2}}-\lambda^{2} U_{s}(\lambda, y)=0
$$

