University of Agriculture, Abeokuta, Department of Mathematics 2009/2010 First Semester Examination July 2010 MTS461 - General Topology

INSTRUCTION: Answer Any Four Questions Time: $2\frac{1}{2}$ Hours

- (a) What is meant by saying that a collection τ of subsets of X is a topology for the set X? Let τ be a class of subsets of N, where N is the set of natural numbers consisting of the empty set and all subsets of N of the form E_n = {n, n + 1, n + 2, n + 3, ...} with n ∈ N.
 - (i) Show that τ is a topology on \mathcal{N} .
 - (ii) List the open sets containing the positive integer 7.
 - (b) When is a topology on X said to
 (i) indiscrete (ii) discrete (iii) cofinite (iv) usual
 Let f: X → Y be a function from a non-empty set X into a topological space (Y, τ_Y). Show that τ_X = {f⁻¹(G) : G ∈ τ_Y} is a topology on X.
 - 2. (a) Let X be a topological space. When do we say that
 - i. $p \in X$ is an accumulation point of a subset A of X
 - ii. \overline{A} is the closure of a subset A of X
 - iii. $p \in A$ is an interior point of a subset A of X
 - iv. Ext(A) is the exterior of a subset A of X
 - v. b(A) is the boundary of a subset A of X.

Show that $b(A \cup B) \subset b(A) \cup b(B)$

- (b) Show that the interior of a set A is the union of all open subsets of A. Furthermore, show that
 - (i) Int(A) is open (ii) Int(A) is the largest open subset of A
 - (iii) A is open if and only if A = Int(A)

3. (a) Let A be a subset of a topological space (X, τ) . Show that the relative topology $\tau_A = \{A \cap G : G \in \tau\}$ is a topology on A.

Let $X = \{a, b, c, d, e\}$ and let $\tau = \{X, \Phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on X. List the members of the relative topology τ_A on $A = \{a, b, d, e\}$.

Show that every subspace of a discrete topological space is also a discrete topological space.

- (b) Let X be a topological space and let p ∈ X. When is a subset N of X called a neighbourhood of p?. Let X = {a, b, c, d, e} and let
 - $\tau = \{X, \{\}, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$ be a topology on X. Find the neigborhood system of
 - (i) the point e (ii) the point c.

Let N_p denote the neighbourhood system of p. Show that

- i. N_p is not empty and $p \in N$ for every $N \in N_p$
- ii. $N_1 \cap N_2 \in N_p$ for every $N_1, N_2 \in N_p$
- iii. If $N_1 \in N_p$ and $N_1 \subset N_2$ then $N_2 \in N_p$.
- 4. (a) Let (X, τ) be a topological space when do we say that
 - i. A class \mathcal{B} of subsets of X is a base for the topology τ on X?
 - ii. A class S of open subsets of X is a subbase for the topology τ of X?
 - iii. A class \mathcal{B}_p of open sets containing $p \in X$ is a local base at p?

Let A be a subset of X. Show that the class $S_A = \{A \cap S : S \in S\}$ is a subbase for the relative topology τ_A on A.

(b) i. Let \mathcal{B} be a base for a topology τ on X and let \mathcal{B}^* be a class of open sets containing \mathcal{B} . Show that \mathcal{B}^* is also a base for τ

ii. Show that every point p in a discrete space X has a finite local base.

5. (a) Let X be a topological space. When is X said to be
(i) T₁ space (ii) T₂ space (iii) Regular space (iv) Normal space (v) Tychonoff

space

Show that every metric space is a Hausdorff space.

- (b) Let X be a topological space. When do we say that
 - i. X is a first countable space
 - ii. X is a second countable space. Show that
 - iii. Every subspace of a first countable space is first countable
 - iv. Every subspace of a second countable space is second countable
- (a) Let X and Y be topological spaces and let f : X → Y be a function. When is f said to be
 - (i) continuous at $p \in X$ (ii) continuous over X
 - (iii) sequentially continuous at $p \in X$ (iv) an open function
 - (v) a closed function (vi) a homeomorphism

For a function f on a topological space X to a topological space Y. Show that the following conditions are equivalent

- (i) The mapping f is continuous
- (ii) Inverse images of all closed subsets of Y are closed in X
- (b) Let X be a topological space. When do we say that
 - i. X is locally compact
 - ii. a subset A of X is countably compact
 - iii. a subset A of X is compact
 - iv. a subset A of X is disconnected?

Let $X = \{a, b, c, d, e\}$ with the topology $\tau = \{\Phi, X, \{c\}, \{c, d, e\}, \{a, b, c\}\}$. Prove or disprove that $A = \{a, d, e\} \subset X$ is disconnected.