UNIVERSITY OF AGRICULTURE, ABEOKUTA, DEPARTMENT OF MATHLMATICS

Second Semester Examination, 2009/2010
 MTS466-Calculus of variations

INSTRUCTION: Answer Any Four Questions Time :2HRS

1(a) Given a functional

$$
I=\iiint F\left(U, U_{x}, U_{y}, U_{z}, x, y, z\right) d x d y d z
$$

Where $U_{x}=\frac{\partial U}{\partial x}$. Show that the Euler's equation for three independent variables can be written as $\frac{\partial F}{\partial U}-\frac{\partial}{\partial x} \frac{\partial F}{\partial U_{x}}-\frac{\partial}{\partial y} \frac{\partial F}{\partial U_{y}}-\frac{\partial}{\partial z} \frac{\partial F}{\partial U_{z}}=0$
(b) If an electrostatic field with energy density in terms of the static potential as $\frac{1}{2} \varepsilon\left(\nabla \Psi^{2}\right)$. Obtain the Laplace's equation of electrostatics $\nabla^{2} \Psi(x, y, z)=0$
(c) Solve the problem of maximizing the function $f(x, y)=2 x y$ subject to $x^{2}+y^{2}-a^{2}=0$ using Lagrange's multiplier.
2. (a). State the Hamilton's principle of motion? Given that $L=T-V$ where L is the Lagrangian, $T=\frac{1}{2} m \dot{x}^{2}, V$ is the potential energy of the system and $F(x)=-\frac{d V(x)}{d x}$. Ob:ain the Newton's law of motion $F(x)=m \ddot{x}$.
(b) If the kinetic energy of a moving particle in cylindrical coordinate $x y$-plane is

$$
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\dot{\rho}^{2}+\rho^{2} \dot{\Psi}^{2}\right)
$$

Show that the radial acceleration and the statement of conservation of angular momentum are $\frac{d}{d t}(m \dot{\rho})-m \rho^{\dot{\Psi}^{2}}=0$ and $\frac{d}{d t}\left(m \rho^{2} \Psi\right)=0 \quad$ respectively.
(c) Given that the length of the enclosed area of a plane is $\int_{2}^{\infty} \frac{1}{2} m(x \dot{y}-y \dot{x}) d t$ subject to the constraint $\int_{0}^{b} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t$. Show that $(y-c)^{2}+(x+k)^{2}=\lambda^{2}$
$\underline{3}$ (a) Given a functional $I=\int_{1_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$. Assuming the existence of an optimum path for which I is stationary, and a function $\eta(x)$ which defines the arbitrary deformation satisfying the boundary requirements that $\gamma_{1}(x)=\eta\left(x_{2}\right)=0$. Obtain the Euler's equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0
$$

(b) Suppose the element of distance describing an isoperimetric problem in Euclidean $\mathrm{x}-\mathrm{y}$ plane given by $d s=\left[1+\left(y^{\prime}\right)^{2}\right]^{\frac{1}{2}}$. obtain the equation $\quad y=a x+b$.
(c) Solve the problem of two parallel coaxial wire circles to be connected by a surface of minimum area that is generated by resolving a curve $y(x)$ about the x-axis in
which the curve is required to pass through the fixed end points. Such that the element of the area is given as
$d A=2 \pi y\left[1+\left(y^{\prime}\right)^{2}\right]^{\frac{1}{2}}$
4(a) Give and explain three examples of physical problems which are functional?.
(b) Prove that minimizing the functional
$I[\phi]=\int_{0}^{[}\left[\phi^{2}+\left(\phi^{\prime}\right)^{2}\right] d x$
With $\phi(0)=U_{0}$ and $\phi(1)=U_{1}$ is equivalent to solving a boundary value problem?.
(c) Deduce the boundary value problem equivalent to minimizing the functional
$I[\phi]=\int^{31}\left[-\left(\phi^{\prime}\right)^{2}-4 \phi\right] d x+12 \phi(3)$
Where $\phi(1)=1$.
$\underline{5}$ (a) Define the following with reference gocd examples
(i) functional (ii) brachistochrone problem (iii) admissible functions
(b) Consider the quantum mechanical problem of a particle (mass m) in rectangular parallelepiped box with sides a, b, c. The ground state energy of the particle is given by

$$
E=\frac{h^{2}}{8 m}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right),
$$

Subject to the constraint that the volume is constant, that is $V(a, b, c)=a b c=k$.
Show that $a=b=c$
(c) Suppose a nuclear reactor having a right-circular cy'inder of radius R and height H with the volume of the reactor vessel

$$
F(R, H)=\pi R^{2} H
$$

Subject to the Neutron diffusion theory constraint $\psi\left(R, F_{i}\right)::\left(\frac{2.4048}{R}\right)^{2}+\left(\frac{\pi}{H}\right)^{2}$. Solve for H in terms of R for the minimum volume of the reactor. .
6 (a) Write down the equations which forms the basis of Raleigh-Ritz method for the computation of eigenfunctions and eigenvalues?
(b) Consider a simple pendulum of mass m, constraint by a wire of length l swing in an arc .
$\psi_{1}=r-l=0$. With two generalized coordinates r and θ. Given that the Lagrangian is, for the potential energy $V=0, L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \theta^{2}\right)+m g r \operatorname{Cos} \theta$. Show that $\ddot{\theta}=-\frac{g}{l} \operatorname{Sin} \theta$.
(c) Suppose that a particle sliding on a cylindrical surface with Lagrangian
$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-m g r \operatorname{Cos} \theta$
Subject to the constraint $\psi_{1}=r-l=0$. Obtain the critical angle θ at which the particle takes off from the surface.

