
International Journal of Computer Applications (0975 – 8887) 

Volume 12– No.5, December 2010 

1 

A Genetic Algorithm Approach for a Real-World University 

Examination Timetabling Problem 
 

Oluwasefunmi T. Arogundade 
Institute of System Science, Academy 
of Mathematics and System Science, 
Chinese Academy of Science, Beijing, 

100190, China. 

 

Adio T. Akinwale 
Department of Computer Science, 
University of Agriculture, Abeokuta, 

Ogun State – Nigeria.  

 

 

Omotoyosi M. Aweda 
Department of Computer Science, 
University of Agriculture, Abeokuta, 

Ogun State – Nigeria.  

ABSTRACT 

With the introduction of modularity, increasing student numbers 

and the continued expansion of university departments, space in 

Nigerian Universities is becoming an increasingly precious 

commodity. To address this, some institutions have tried to ensure 

efficient space utilization by employing different proposed 

solutions to space allocation problems especially during 

examination period. 

A number of approaches have been explored in the casting of 

examination timetables for academic institutions. The approach to 

be discussed here applies genetic algorithm using hierarchy of 

constraints. This hierarchy can incorporate individual requests or 

organizational requirements by weighing them according to some 

criteria. In this paper, we present a new real-world examination 

timetabling dataset at the University of Agriculture, Abeokuta 

Nigeria that will hopefully be used as a future benchmark 

problem. In addition, a new objective function that attempts to 

spread exams throughout the examination period is also 

introduced. This objective function that taking into account both 

timeslots and days assigned to each exam, is different from the 

often used objective function from the literature that only 

considers timeslot adjacency. Also room capacity for each room is 

included in the examination datasets specification. This approach 

has been tested with real data from the university and numerical 

results is presented and discussed. 

General Terms:  Scheduling, Algorithms, NP hard 

Keywords: Genetic Algorithms, Examination Timetabling, 

Constraint, NP Complete, Scheduling. 

1. INTRODUCTION 
Timetabling problems are well known complicated constraint 

satisfaction problems given to be NP complete. Organizations like 

Universities, Polytechnics and most educational institutions in 

general use timetables to schedule classes and lectures, assigning 

time and places to future events in a way that makes use of the 

available resources in the most optimal way. Universities in 

particular increasingly have to deal with a large number of courses 

and flexible degree structures. Poorly designed timetables are not 

just inconvenient but also prove costly in terms of time and 

money.  

The difficulty is due to the great complexity of the construction of 

timetables for exams, due the scheduling size of the examinations 

and the high number of constraints and criteria of allocation of 

space. 

Timetabling problem has been studied by numerous researchers 

due to its NP complete nature (Even et.al., 1976). There are 

varieties of timetabling problem classes on which variety of 

approaches are used. Most of the research in the area focuses on 

employee shift timetabling, especially; nurse rostering, course 

timetabling and examination timetabling [13, 5, 12, 1, 3, and 9]. 

According to A. Wren, 1996; “Timetabling is the allocation, 

subject to constraints, of given resources to objects being placed 

in space and time, in such a way as to satisfy as nearly as possible 

a set of desirable objectives.” Real timetabling problems have 

many forms like educational timetabling (course and exam), 

employee timetabling, timetabling of sports events, timetabling of 

transportation means, etc. 

The aim in examination timetabling is to produce the most 

appropriate schedule for a set of examinations under a given 

constraint. 

This subject has received special attention of the scientific 

community in the last five decades. This great interest, caused in 

1995, the creation of series of conferences PATAT (Practice and 

Theory of Automated Timetabling) with new editions every two 

years (PATAT, 1995) and the establishment of EURO 

(Association of European Operational Research Societies) WATT 

(Working Group on Automated Timetabling). In 2002 emerged 

with the support of PATAT, the International Competition of 

Timetabling (ITC, 2002). 

Examination timetabling problems are generating considerable 

interest from researchers across the fields of Operations Research 

and Artificial Intelligence. More details about some future 

directions for timetabling research such as case based reasoning 

(to solve the problem directly and also to select appropriate 

heuristics); multi-criteria methods and hyper-heuristics can be 

seen in [2].  

Tabu search approach was explored by [6] using graph coloring 

based heuristics. Merlot et. al. in his article [7]  proposed a hybrid 

approach for solving the final examination timetabling problem 

that generates an initial feasible timetable using constraint 

programming, and then applied simulated annealing with hill 

climbing to obtain a better solution. Burke et.al. [4] Proposed a 

general and fast adaptive method that arranges the heuristic to be 

used for ordering examinations to be scheduled next. 

The method of solution to examination timetabling problem in 

this work is genetic algorithm using hierarchy of constraints. 

Genetic algorithm is a repetitive process, which consists of 

constant size population of individual, each one (i.e. individual) 

being represented by a finite string of symbols, usually equating 



International Journal of Computer Applications (0975 – 8887) 

Volume 12– No.5, December 2010 

2 

to chromosomes in real organisms, encoding a possible solution in 

a given problem space. This space referred to as the search space 

encodes all feasible solution to the problem at hand. Generally 

speaking, the genetic algorithm is applied to spaces which are too 

large to be exhaustively searched. 

The dataset presented here is real data for undergraduate 

examinations for first semester, at the University of Agriculture 

Abeokuta (UNAAB), Nigeria 2008. The dataset presented here 

has been processed which excluded the courses with no exam and 

modified the original dataset by replacing the appropriate exams 

accordingly. In this dataset, the total number of examinations is 

437 exams with 8,000 students, and the number of exam days is 

22 days. The total number of hall used is 42. The capacity of each 

of the hall is shown in table 1. The examination timetabling 

dataset presented in this paper has more practical constraints 

compared to existing examination dataset and the results achieved 

in real and complex scenarios are satisfactory; hence the exam 

timetabling meets the imposed regulations. 

1.1 The current Examination Timetabling 

System in University of Agriculture Abeokuta. 

The examination schedule is displayed as a grid (usually with 

days of the week on one axis and time periods on the other). 

Being a familiar format, it facilitates visual checking for 

scheduling conflicts, which takes a lot of time. This format allows 

the person constructing the schedule to input and modify 

schedule, attempts various options and make changes until the 

schedule is satisfactory. 

Most of the time new schedule is based on the schedule from a 

previous academic calendar. This kind of unintelligent scheduling 

system, though having graphical interface is very different from a 

standard menu or dialog box based system as in the new 

examination timetabling system implemented in this paper. It 

requires considerably more creativity in implementation. 

This approach may appear simple to implement, it is only usable 

for very small inputs. 

2. PROBLEM STATEMENT 
The exam timetabling problem is essentially concerned with 

scheduling a number of exams into a limited number of timeslots 

or periods in order to satisfy, as much as possible, a set of 

specified constraints. These constraints vary from institution to 

institution. It is often essential that some constraints are 

completely satisfied. Such constraints are called hard constraints. 

Usually these constraints relate to operational limitations that 

cannot be bypassed in the real world, such as the constraint that 

one person cannot be in two places at once or that there are a 

maximum number of people that can be accommodated in a 

particular room. We call a timetable that satisfies all hard 

constraints a feasible timetable. 

Another class of constraints that occur in timetabling problems is 

those that are deemed desirable, but that are often either difficult 

or impossible to fully satisfy. This could include providing study 

time for each student between any two exams, or making more 

efficient use of rooms. These constraints are usually called soft 

constraints. Such constraints often determine the quality of a 

timetable.  

In general we would think of a good quality timetable as one that 

is (firstly) feasible and that (secondly) satisfies the soft constraints 

to an acceptable level. Of course, the quality of a solution is very 

much subjective. One institution’s idea of a good timetable could 

very well be a poor timetable for another institution. For example, 

it may be that one institution insists on having a clear day in 

between exams for all of its students (i.e. it makes this a hard 

constraint). Another institution may be more concerned with 

holding all of the exams as quickly as possible in which case the 

inclusion of the above constraint would be detrimental to the 

quality of the timetable. 

2.1 Constraints 

The constraints considered in this work to schedule examinations 

are: 

     1.  No student may have two examinations in the same 

period if examination i and j are scheduled in slot p, the number 

of students sitting for both examination i and j must be equal to 

zero i.e. 

1
1

0

1 1

0;

* ( , ) 0 ( , ) i j

ij

L L
if t t

ij i j i j otherwise

i j i

k

k x t t where x t t
 

     2. For each timeslot t, the total number of students taking 

examination must not exceed the maximum seat capacity available 

for that period. In this case, 3350 seats per slot. Classes ≤ seats 

for (1,..., )t p . 

The same hall should not be scheduled for two exams at the same 

time except if the size of the hall is large, and then two different 

exams can be scheduled. 

Exams are spread as evenly as possible throughout the schedule. 

All exams must be scheduled  

1

0

1

1 1,...,
T

if exam i is assigned to

is is otherwise

s

for all i l where

In addition, a soft constraint where no student should have to sit 

for three examinations consecutively is being considered. 

In this work, we are mainly concerned with generating 

examination timetable for the university system using University 

of Agriculture Abeokuta as a case study. Nevertheless, we tried to 

formulate the timetabling problem in a general way in order to 

take into account all the particular requirements of every school in 

Nigeria. Thus, we have the following data sets: 

A set H = {h1,…, hn} of halls. A hall is a venue of specific 

capacity. 

A set C = {c1,…, cm} of courses. 

A set K = {k1,…, kk} of  classes. A class is a group of students 

writing the same exam. 

A set A = {a1,…,al } of exams. An exam is an instance of a list of 

halls, a list of courses and a list of classes. Each exam has a 

duration expressed in time slots. 

A set T = {t1,...,tp} of time slots. Time slots are distributed in d 

week days and h daily periods. 

K = (kij) AxA is the conflict matrix where each element denoted 

by Kij, (i,j e{1,…,L} is the number of classes taking exams Ai and 

Aj. 



International Journal of Computer Applications (0975 – 8887) 

Volume 12– No.5, December 2010 

3 

3. METHODOLOGY 

The processing algorithm used is the Genetic Algorithm.  

3.1 Genetic Algorithm 

Genetic Algorithms (GAs) are adaptive methods which may be 

used to solve search and optimization problems. They are based 

on the genetic processes of biological organisms. Over many 

generations, “natural populations evolve according to the 

principles of natural selection and survival of the fittest”, this was 

first clearly stated by Charles Darwin in “The Origin of Species”. 

By mimicking this process, genetic algorithms are able to evolve 

solutions to real world problems, if they have been suitably 

encoded. 

A simple genetic algorithm describes the following cycle: 

1st Generation of random n chromosomes that form the 

initial population; 

2nd  Assessment of each individual of the population; 

3rd  Verification of the termination criteria; 

4th  It verifies termination criterion - cycle ending; 

5th  Selection of n/2 pairs of chromosomes for crossover; 

6th  Reproduction of chromosomes with recombination and 

mutation; 

7th  New population of chromosomes called new generation; 

8th  Go back to step 2. 

 

Genetic algorithm is fairly simple. For each generation it performs 

two basic operations:  

Randomly selects N pairs of parents from current population and 

produces N new chromosomes by performing crossover operation 

on pair of parents.  

Randomly selects N chromosomes from current population and 

replaces them with new ones. The algorithm doesn’t select 

chromosomes for replacement if it is among the best 

chromosomes in population.  

And these two operations are repeated until the best chromosome 

reaches fitness value equals to 1 (meaning that all classes in 

schedule meet requirement). Genetic algorithm keeps track of M 

best chromosomes in population and guarantees that they are not 

going to be replaced while they are among the best chromosomes. 

In this work, the population is represented in an array and each 

chromosome serves as an array index. It is briefly described as 

follows. 

We represent total number of halls as length of array of halls. 

We represent total number of courses as length of courses. 

Using random generation for crossover, if an array index say 50 is 

randomly generated in an array of courses,  and the number in 

index is greater than 500, it checks the big hall array for a 

chromosome less than or equals to 500. If it is equal to 500, it 

assigns and indicates so that, that hall chromosome will not be 

assigned again for another course chromosome. 

If chromosome is less than 500, there is a check in the big hall 

array and continues to pick the chromosome hall until it adds up 

to 500. It then indicates assignment to that hall and courses 

satisfying all the constraints in section 2.1. 

The fitness is generated so as satisfy the new population and it is 

evaluated as: 

 fitme = (Math.random()+ 0.5); 

   if (fitme>1) 

             fitme=fitme - 0.3 

 if (fitme<0.7) 

          fitme = fitme + (Math.random()+ 0.2);   

The fitness has values of 0.5-1.5. 

3.2 Experimental Data 

In this dataset, the total number of examinations is 437 exams 

with 8,000 students, and the number of exam days is 22 days. The 

total number of hall is 42. Hall specifications are shown in table 1 

and course specifications are shown in table 2. 

3.2 .1 The Hall Capacity Table 

This table contain information about the halls and its seat capacity 

as shown in figure 1. 

Figure 1: Hall Capacity 

 

3.2.2 The Student Table 

This table contains information about courses and the number of 

student offering each course as illustrated in figure 2. 

Figure 2:  Student Table 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 12– No.5, December 2010 

4 

4. IMPLEMENTATION AND RESULTS 
The genetic algorithm was converted into java codes using the 

methodology in section 3.0. The program was tested on IBM PC 

with hardware configuration of Pentium IV 1GHZ processor, 

512Mb Ram and SVGA monitor. The program used hall and 

course specifications in figure 1 and figure 2 as input. The system 

output is in six faces because of the length of examination period 

and the number of courses being offered. The output of this 

system is quite large, therefore only a phase is shown in figure 3. 

 

Figure 3: Sample of Examination Timetable Generated 

5. CONCLUSION 
Many institutions have different ways of computing a timetable 

that will suit their population size which often has correctable 

errors. However, genetic algorithm as a tool in artificial 

intelligence, a branch of computer science, has offered a near to 

optimal solution to scheduling problems in general and produces 

little or no error. It has been demonstrated that genetic algorithm 

is useful in expressing constraint and provides intuitive solution 

to the constraint with an object oriented language. 

In this paper we have introduced a new real-world examination 

timetabling problem at the University of Agriculture Abeokuta, 

Nigeria with an objective function that attempts to create gap 

between examinations for groups of students. To adhere with the 

practical examination timetabling, room capacity for examination 

purpose (this is different from sitting capacity for lectures) is also 

included in examination datasets specification. This exam 

timetabling system can be used in another institution of higher 

learning that has the same pattern of time slots. This system also 

allows large input unlike the system being used which is described 

in section 1.1. Since the system allows the user to input the 

resources available in terms of space and courses with the total 

number of students that will write the exams. This flexibility of 

domain requirement makes this system ideal for generating exam 

timetables because it will save time and money.  

 

6. REFERENCES  
[1]. Alkan, A. and Ozcan, E. “Genetic Algorithms for 

Timetabling’, Proc. of 2003 IEEE congress on Evolutionary 

Computation, 2003  pp. 1796-1802. 

[2]. Burke and Petrovic, , Recent Research Directions in 

Automated Timetabling, European Journal on Operational 

Research-EJOR, vol. 140 (2),2002  266-280. 

[3]. Burke E.K and Newall J.P, , “Solving Examination 

Timetabling Problems through Adaptations of Heuristic 

Orderings: Models and Algorithms for planning and 

Scheduling Problems” Annals of Operation Research, vol. 

129, no. 1-4, 2004  pp. 107-134(28). 

[4]. Burke, E.K., and Bykov, Y.  An adaptive fle-deluge 

approach to university exam timetabling submitted to 

INFORMS journal of computing 2008. 

[5]. Fang, H.L.  “Genetic Algorithms in Timetabling and 

Scheduling’, PhD thesis, department of Artificial 

Intelligence, University of Edinburgh, Scotland. 1994. 

[6]. Gaspero, L. Di and Schaerf, A. “ Tabu search techniques for 

examination timetabling”, LCNS archive selected papers 

from the third international conference on practice and 

theory of automated time tabling, 2000 pp. 104-117. 

[7]. Merlot, L., Boland, N.; Hughes, B. and Stuckey P. “ Ahybrid 

algorithm for the examination timetabling problem” Lecture 

Notes in Computer Science, vol. 2740, Gent, Belgium, 

Springer-verlag,  2003 pp.207-231. 

[8]. Mitchell, Melanie,  An Introduction to Genetic Algorithms. 

MIT Press 1996. 

[9]. Ozcan, E. “Genetic Algorithms for Nurse Rostering”, The 

20th international symposium on computer and information 

sciences 2005. 

[10]. Ozcan, E. Final Exam Scheduler (FES), Proc. of 2005 IEEE 

Congress on Evolutionary Computation, Vol.2, 2005. 1356-

1363. 

[11]. Petrovic, S., Yang, Y., Dror, M.  “Case-based initialization 

of metaheuristics for examination Timetabling”, pp. 137-154; 

proc. of 1st multidisciplinary int’l conference on scheduling: 

Theory and Application (MISTA 2003) 2003  pp. 137-154. 

[12]. Schaerf, A.  “ A survey of automated timetabling” artificial 

Intelligence Review, 13(2):87-127 1999. 

[13]. Werra, D. De, “An introduction to timetabling” European 

Journal of Operation Research, 19 1985 :151-162. 


