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Abstract 
 

The chemical compositions of leaf lipids of two angiosperms plant species (Ficus. 
elasticoides and Phyllanthus amaraus) have been analyzed by gas chromatography-mass 
spectrometry. The distributions and abundance of compounds that can serve as precursors 
for higher plant biomarker hydrocarbons commonly found in sediments and fossil fuels 
were assessed. Aliphatic lipids such as n-alkanes, n-alkanols and n-alkanoic acid were 
detected in the lipid extracts. Triterpenoids of the oleanane (28-norolean-17-en-3-one, β -
amyrin), ursane (α -amyrin) and lupane (lupeol, betulin) series, as well as steroids (α-
sitosterol and stigmasterol) were also detected in the extracts. These compounds can serve 
as precursors for several triterpanes and steranes found in sedimentary records. 
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1.  Introduction 
Several aliphatic and aromatic hydrocarbons occurring in sediments and crude oils have been related to 
biological precursors present in higher plants, most especially the angiosperms (Whitehead, 1974; 
Eglinton and Hamilton, 1967; Riva et al., 1988; Bianchi, 1995; Nytoft et al., 2002; Jansen et al., 2006). 
These compounds, know as biomarkers, are useful in assessing the biological origin and thermal 
maturity of organic matter in geological samples and in paleoenvironmental reconstruction (e.g. Mello 
et al., 1988; Riva et al., 1988; Ekweozor and Udo, 1988; Riva et al., 1988; Ekweozor and Telnaes, 
1990; Seifert and Moldowan, 1978; 1981). Land plants have been major sources of long chain n-
alkanes, n-alkanols and n-alkanoic acids in the range of C22 to C32 (Douglas and Eglinton, 1966; 
Eglinton and Hamilton, 1967; Baker, 1982; Barthlott et al., 1998; Chikaraishi and Naraoka, 2007). 
Distributions of n-alkanes with odd over even carbon number predominance in the C25 to C35 carbon 
number range are usually attributed to epicuticular wax from higher plants (Eglinton and Hamilton, 
1963; Rieley et al., 1991; Collister et al., 1994). The relative amount of odd/even carbon number n-
alkane or the Carbon preference index (CPI) is to some extent used to obtain information on the 
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relative maturity of oil and rock extract (Bray and Evas, 1961; Eglinton and Hamilton, 1967; Barthlott 
et al., 1998). 

Diterpenoids are excellent biomarkers derived from terrestrial plants but are found mostly in 
gymnosperm and in only a few angiosperms among contemporary plants. Diterpenoids are present in 
high concentrations in several conifer species (Otto and Simoneit, 2001; Otto et al., 2003; Otto and 
Wilde, 2001). The triterpenoids of the oleanane, ursane and lupane classes derive essentially from 
various oxygenated triterpenoids in angiosperms (Simoneit, 1986; Woolhouse et al., 1992; Rullkötter 
et al., 1994). Angiosperms contain triterpenoids of the β-amyrin which upon diagenesis will ultimately 
produced the C30 triterpane known as oleanane. Oleanane has been used as a reliable marker for higher 
plants input into oil source rock and as well as maturity indicator (Hill and Whitehead, 1966; 
Ekweozor and Udo, 1987; Ekweozor and Telnaes, 1990). Lupane, a C30 pentacyclic triterpane is 
considered as common constituents of coal biomarkers and more often have been detected in low rank 
coals as their corresponding unsaturated analogs (Wang and Simoneit, 1990). The probable biogenic 
source for the lupane skeleton has been proposed to be angiosperms. 

Steranes found in sediments and fossil fuels are derived from sterols, which are widely 
distributed in plants and microorganism. Sterols present in resins and essential oils of higher plants 
have been reported to be the major source of C28 and C29 steroids and steranes/sterenes found in 
sediments and fossil fuels (Baker, 1982; Harwood and Russell, 1984; Bianchi, 1995; Huang et al., 
1995). The aim of this study was to assess the distributions and abundance of land plant biomarker 
precursors in two angiosperm species (Ficus. elasticoides and Phyllanthus amaraus). 
 
 
2.  Experimental 
2.1. Sample Preparation 

Fresh leaves of Ficus. elasticoides and Phyllanthus amaraus were collected in Ibadan, Nigeria. The 
leaves were freeze-dried and crushed to a fine powder. Prior to lipid extraction, the powdered leaves 
were stored at -20ºC to prevent degradation by bacteria and fungi. 
 
2.2. Extraction and Derivatisation 

The freeze–dried samples were extracted ultrasonically three times for 10mins with 
dichloromethane/methanol (1:1; v/v). The combined solvent extracts were filtered and concentrated by 
use of a rotary evaporator and then blow-down under nitrogen gas. Aliquots of the lipid extracts were 
converted to trimethylsilyl derivatives by reaction with N, O-bis-(trimethylsilyly) trifluoroacetamide 
(BSTFA) and pyridine for 3 hrs at 70ºC. 
 
2.3. Gas Chromatography-Mass Spectrometry 

Gas chromatography-mass spectrometry (GC-MS) analyses of the derivatized lipid extracts were 
performed on an Agilent Model 6890 GC with split/splitless injector interfaced to an Agilent 5973 
Mass Selective Detector. (electron input energy 70Ev, filament current 220Μa, source temperature 
160ºC, multiplier voltage 1500V, interface temperature 300ºC). Data were acquired and process by a 
HP Vectra 486 Chemstation computer in full scan mode (50-650) or selected ion mode. 

GC-MS analyses in full scan mode (m/z 50-650) were performed on a Varian CP-3800 gas 
chromatograph, interfaced to a Varian 1200 mass spectrometer (EI mode, 70 eV). Separation was 
achieved on a VF-1MS fused silica capillary column (50 m x 0.25 mm i.d., 0.25 μm thickness), with 
helium as the carrier gas, and an oven programme of 50°C (hold for 2 min) to 300°C (hold for 20.5 
min) at 4°C min-1. Compound identification was based on comparison of mass spectra with literature 
and library data and interpretation of fragmentation pattern. Components in the mass chromatograms of 
the lipid extracts were quantified by integration of their peak areas. 
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3.  Results 
3.1. Chemical Composition of the Total Extracts 

The total ion chromatograms (TIC) of the lipid extracts of the samples are shown in Fig. 1. The 
identified compounds with their relative abundance are given in Table 1. 

The extracts contained aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acid), triterpenoids, 
steroids, carbohydrates and some unidentified compounds. 
 
3.2. Aliphatic Lipids 

The C28 and C31 homologues were the only n-alkanes detected in the two samples. n-Alkanes are one 
of the most abundant lipid molecules biosynthesized by terrestrial plants and are usually characterized 
by odd over even carbon number predominance in the C25 to C35 carbon number range (Rieley et al., 
1991; Collister et al., 1994). The abundance of C31 relative to C28 n-alkanes in the extracts further 
confirm the use of odd over even carbon predominance of n-alkanes distribution as indicator of 
terrestrial organic matter contributions to geological materials (Eglinton and Hamilton, 1967; Pancost 
and Boot, 2004; Jansen et al., 2006; Chikaraishi and Naraoka, 2007).. The F. elasticoides extracts 
contains n-C16 and n-C28 alkanol while P. amarus has only the n-C16 alkanol. The n-alkanols in the 
extracts are also associated with pentinol, arabitol and inositol, even at very high concentration. The n-
alkanoic acids in the extracts range from C2 to C24 with C16 and C18 as the major components in F. 
elasticoides and P.amarus extracts, respectively. This observation agreed with previous reports of n-
alkanoic distributions in epicuticular leaf waxes of higher land plants where n-alkanoic acids 
maximizing at C16 or C18 are ubiquitous compounds originating from higher plant lipids (Gupta et al., 
2007; Chikaraishi and Naraoka, 2007). Succinic, gluconic and oleic acids were also detected along side 
the n-alkanoic acids in the lipid extracts. 
 
3.3. Triterpenoids distribution 

The major triterpenoids identified in the extract of Ficus elasticoides were 28-norolean-17-en-3-one, 
lup-20(29)-ne-3β-ol (lupeol), β –amyrin, α-amyrin and lup-20(29)-en-3β-28-diol (betulin). Lup-20(29)-
ne-3β-ol (lupeol), β –amyrin and α-amyrin were the only triterpenoids detected in the extract of P. 
amarus. These triterpenoids can serve as precursors for many biomarkers found in geological samples. 
Triterpanes of the oleanane, ursane and lupane series reported in crude oils and sediments are believed 
to be derived from oxygenated triterpenoids in angiosperms (Simoneit, 1986; Woolhouse et al., 1992; 

Rullkötter et al., 1994; Otto and Simoneit, 2001; Otto and Wilde, 2001). β -amyrin has been 
reported to be the major precursor of oleanane and a number of polycyclic hydrocarbons. 1,2,5 and 
1,2,7-trimethylnaphthalene have been suggested to be degraded products of β-amyrin (Strachan et al., 
1985). The degradation of the β-amyrin via 8,14-seco-triterpenoids is supposed to additionally yield 
1,2,5,6-tetramethylnapthalene (Puttman and Villa, 1987). Lupanoids (e.g. lupan-3β, 20,28-triol, lup-
20(29)-ne-3β-ol, lup-20(29)-en-3β-28-diol) are believed to be major precursors of lupane found in 
geological samples. It has been shown that acid catalysed isomerisation of lup-20(29)-ene can also 
produce oleananes (Rullkotter et al., 1994). Lupane occurs mostly in coals and lignites but has not been 
detected in petroleum (Wang and Simoneit, 1990; Peters and Moldowan, 1993; Stefanova et al., 1995). 
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Figure 1: Total ion current (TIC) chromatograms of the leaf extracts of (a) Ficus elasticoides and (b) 
Phyllanthus amarus 

 
3.4. Steroid Distribution 

Sitosterol and stigmasterol were the steroids identified in the extract of F. elasticoides while P. amarus 
has only the stigmasterol. α-sitosterol and stigmasterol have been reported to be widely distributed 
among the plant kingdom and the most common steroids in the epicuticular waxes of higher plants 
(Baker, 1982; Harwood and Russell, 1984; Bianchi, 1995). C28 and C29 steroids and their saturated 
counterpart (sterane) in oils and sediments are derived mainly from degradation of α-sitosterol and 
stigmasterol (Harwood and Russell, 1984; Bianchi, 1995; Huang et. al., 1979; Huang et al., 1995; 
Brassel et al., 1983). Steranes and diasteranes are formed from steroid diagenesis processes that 
involve defunctionalization (loss of a hydroxyl group), loss of hydrogen and oxygenation. 
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Table 1: Compounds identified in the lipid extracts of Ficus. elasticoides and Phyllanthus amaraus 
 

 Occurrence and Relative Abundancea 
Peak Compound name MW Composition F. elasticoides P. amarus 
 n-Alkanes     
• Octacosane 394 C28H58 12.6 8.2 
• Heneicosane 436 C31H64 10.7 7.5 
 n-alkanols     
n1 Glycerol 92 C3H8O 10.9 11.2 
▲ Hexadecanol 296 C16H34O 12.4 22.2 
▲ Octacosanol 410 C28H58O 8.5 0 
n2 Arabitol 152 C5H12O5 10.4 2.0 
n3 Inositol 180 C6H12O6 12.4 10.6 
 n-alkanoic acids     
▪ Acetic acid 60 C2H4O2 0.9 1.3 
▪ Dodecannoic acid 200 C12H24O2 2.0 0.7 
▪ Tetradecannoic acid 228 C14H28O2 7.0 9.6 
▪ Pentadecannoic acid 242 C15H30O2 3.0 4.2 
▪ Hexadecannoic acid 256 C16H32O2 45.2 28.2 
▪ Heptadecannoic acid 270 C17H34O2 2.5 9.2 
▪ Octadecannoic acid 424 C18H36O2 5.6 5.2 
e1 Gluconic acid 196 C6H12O7 0 5.7 
e2 Oleic acid 282 C18H34O2 18.0 0 
 Terpenoids     
t1 28-norolean-17-en-3-one 410 C29H46O 27.6 0 
t2 lup-20(29)-ene-3β-ol 424 C30H48O 40.4 65.2 
t3 β -Amyrin 426 C30H50O 47.4 6.05 
t4 α -Amyrin 426 C30H50O 100 100 
t5 lup-20(29)-en-3β-28-diol 442 C30H48O2 41.1 0 
 Steroids     
s1 Stigmasterol 412 C29H48O2 28.7 40.3 
s2 α -Sitosterol 414 C29H50O 30.8 0 
 Carbonhydrate     
h1 Galactose 180 C6H12O6 8.6 25.2 
h2 L-Mannopyranose 180 C6H12O6 1.3 0 
h3 Maltose 342 C12H22O11 5.4 0 
h4 D-Turanose 342 C12H22O11 10.8 1.8 

a Relative abundance normalized to major peak = 100 
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Figure. 2: Structure of polar triterpenoids and steroids identified in the leaf lipids of Ficus elasticoides and 

Phyllanthus amarus 
 



Chemical Composition of Leaf Lipids of Angiosperms: Origin of 
Land Plant- Derived Hydrocarbons in Sediments and Fossil Fuel 197 
 

 

3.4. Other Compounds 

Some free carbohydrates were detected in the extracts. Galactose, L-manopyranose, maltose and D-
Turanose were detected in F. elasticoides while galactose and D- Turanos were present in P. amarus 
(Table 1). 
 
 
4.  Conclusions 
Gas chromatography-Mass spectrometry analyses of total lipid extracts of Ficus. elasticoides and 
Phyllanthus amaraus leaves were performed to determined their chemical composition. The extracts 
contained aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acid), triterpenoids and steroids that can 
serve as precursors for most of the higher plant derived biomarkers and polycyclic hydrocarbons found 
in fossil fuels and sediments. 
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